Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Oncol ; 61(2): 255-263, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34918621

RESUMO

BACKGROUND: Tumor delineation is time- and labor-intensive and prone to inter- and intraobserver variations. Magnetic resonance imaging (MRI) provides good soft tissue contrast, and functional MRI captures tissue properties that may be valuable for tumor delineation. We explored MRI-based automatic segmentation of rectal cancer using a deep learning (DL) approach. We first investigated potential improvements when including both anatomical T2-weighted (T2w) MRI and diffusion-weighted MR images (DWI). Secondly, we investigated generalizability by including a second, independent cohort. MATERIAL AND METHODS: Two cohorts of rectal cancer patients (C1 and C2) from different hospitals with 109 and 83 patients, respectively, were subject to 1.5 T MRI at baseline. T2w images were acquired for both cohorts and DWI (b-value of 500 s/mm2) for patients in C1. Tumors were manually delineated by three radiologists (two in C1, one in C2). A 2D U-Net was trained on T2w and T2w + DWI. Optimal parameters for image pre-processing and training were identified on C1 using five-fold cross-validation and patient Dice similarity coefficient (DSCp) as performance measure. The optimized models were evaluated on a C1 hold-out test set and the generalizability was investigated using C2. RESULTS: For cohort C1, the T2w model resulted in a median DSCp of 0.77 on the test set. Inclusion of DWI did not further improve the performance (DSCp 0.76). The T2w-based model trained on C1 and applied to C2 achieved a DSCp of 0.59. CONCLUSION: T2w MR-based DL models demonstrated high performance for automatic tumor segmentation, at the same level as published data on interobserver variation. DWI did not improve results further. Using DL models on unseen cohorts requires caution, and one cannot expect the same performance.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias Retais , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Variações Dependentes do Observador , Neoplasias Retais/diagnóstico por imagem
2.
Phys Med ; 123: 103404, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852365

RESUMO

BACKGROUND: Image-driven dose escalation to tumor subvolumes has been proposed to improve treatment outcome in head and neck cancer (HNC). We used 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) acquired at baseline and into treatment (interim) to identify biologic target volumes (BTVs). We assessed the feasibility of interim dose escalation to the BTV with proton therapy by simulating the effects to organs at risk (OARs). METHODS: We used the semiautomated just-enough-interaction (JEI) method to identify BTVs in 18F-FDG-PET images from nine HNC patients. Between baseline and interim FDG-PET, patients received photon radiotherapy. BTV was identified assuming that high standardized uptake value (SUV) at interim reflected tumor radioresistance. Using Eclipse (Varian Medical Systems), we simulated a 10% (6.8 Gy(RBE1.1)) and 20% (13.6 Gy(RBE1.1)) dose escalation to the BTV with protons and compared results with proton plans without dose escalation. RESULTS: At interim 18F-FDG-PET, radiotherapy resulted in reduced SUV compared to baseline. However, spatial overlap between high-SUV regions at baseline and interim allowed for BTV identification. Proton therapy planning demonstrated that dose escalation to the BTV was feasible, and except for some 20% dose escalation plans, OAR doses did not significantly increase. CONCLUSION: Our in silico analysis demonstrated the potential for interim 18F-FDG-PET response-adaptive dose escalation to the BTV with proton therapy. This approach may give more efficient treatment to HNC with radioresistant tumor subvolumes without increasing normal tissue toxicity. Studies in larger cohorts are required to determine the full potential for interim 18F-FDG-PET-guided dose escalation of proton therapy in HNC.


Assuntos
Estudos de Viabilidade , Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons , Terapia com Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Masculino , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA