Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 23(1): 895-910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570876

RESUMO

The incidence of anterior cruciate ligament (ACL) ruptures is approximately 50 per 100,000 people. ACL rupture repair methods that offer better biomechanics have the potential to reduce long term osteoarthritis. To improve ACL regeneration biomechanically similar, biocompatible and biodegradable tissue scaffolds are required. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with high 3-hydroxyvalerate (3HV) content, based scaffold materials have been developed, with the advantages of traditional tissue engineering scaffolds combined with attractive mechanical properties, e.g., elasticity and biodegradability. PHBV with 3HV fractions of 0 to 100 mol% were produced in a controlled manner allowing specific compositions to be targeted, giving control over material properties. In conjunction electrospinning conditions were altered, to manipulate the degree of fibre alignment, with increasing collector rotating speed used to obtain random and aligned PHBV fibres. The PHBV based materials produced were characterised, with mechanical properties, thermal properties and surface morphology being studied. An electrospun PHBV fibre mat with 50 mol% 3HV content shows a significant increase in elasticity compared to those with lower 3HV content and could be fabricated into aligned fibres. Biocompatibility testing with L929 fibroblasts demonstrates good cell viability, with the aligned fibre network promoting fibroblast alignment in the axial fibre direction, desirable for ACL repair applications. Dynamic load testing shows that the 50 mol% 3HV PHBV material produced can withstand cyclic loading with reasonable resilience. Electrospun PHBV can be produced with low batch variability and tailored, application specific properties, giving these biomaterials promise in tissue scaffold applications where aligned fibre networks are desired, such as ACL regeneration. .

2.
Appl Microbiol Biotechnol ; 90(3): 911-20, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21311879

RESUMO

The effects of foaming on the production of the hydrophobin protein HFBII by fermentation have been investigated at two different scales. The foaming behaviour was characterised in standard terms of the product enrichment and recovery achieved. Additional specific attention was given to the rate at which foam, product and biomass overflowed from the fermentation system in order to assess the utility of foam fractionation for HFBII recovery. HFBII was expressed as an extracellular product during fed-batch fermentations with a genetically modified strain of Saccharomyces cerevisiae, which were carried out with and without the antifoam Struktol J647. In the presence of antifoam, HFBII production is shown to be largely unaffected by process scale, with similar yields of HFBII on dry matter obtained. More variation in HFBII yield was observed between fermentations without antifoam. In fermentations without antifoam, a maximum HFBII enrichment in the foam phase of 94.7 was measured with an overall enrichment, averaged over all overflowed material throughout the whole fermentation, of 54.6 at a recovery of 98.1%, leaving a residual HFBII concentration of 5.3 mg L(-1) in the fermenter. It is also shown that uncontrolled foaming resulted in reduced concentration of biomass in the fermenter vessel, affecting total production. This study illustrates the potential of foam fractionation for efficient recovery of HFBII through simultaneous high enrichment and recovery which are greater than those reported for similar systems.


Assuntos
Antiespumantes/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Tensoativos/química , Tensoativos/metabolismo , Fermentação , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/genética , Trichoderma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA