Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 566(7742): 85-88, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30675066

RESUMO

The origin of the supermassive black holes that inhabit the centres of massive galaxies remains unclear1,2. Direct-collapse black holes-remnants of supermassive stars, with masses around 10,000 times that of the Sun-are ideal seed candidates3-6. However, their very existence and their formation environment in the early Universe are still under debate, and their supposed rarity makes modelling their formation difficult7,8. Models have shown that rapid collapse of pre-galactic gas (with a mass infall rate above some critical value) in metal-free haloes is a requirement for the formation of a protostellar core that will then form a supermassive star9,10. Here we report a radiation hydrodynamics simulation of early galaxy formation11,12 that produces metal-free haloes massive enough and with sufficiently high mass infall rates to form supermassive stars. We find that pre-galactic haloes and their associated gas clouds that are exposed to a Lyman-Werner intensity roughly three times the intensity of the background radiation and that undergo at least one period of rapid mass growth early in their evolution are ideal environments for the formation of supermassive stars. The rapid growth induces substantial dynamical heating13,14, amplifying the Lyman-Werner suppression that originates from a group of young galaxies 20 kiloparsecs away. Our results strongly indicate that the dynamics of structure formation, rather than a critical Lyman-Werner flux, is the main driver of the formation of massive black holes in the early Universe. We find that the seeds of massive black holes may be much more common than previously considered in overdense regions of the early Universe, with a co-moving number density up to 10-3 per cubic megaparsec.

2.
Toxicol Appl Pharmacol ; 485: 116889, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479592

RESUMO

Hexavalent chromium [Cr(VI)] is considered a major environmental health concern and lung carcinogen. However, the exact mechanism by which Cr(VI) causes lung cancer in humans remains unclear. Since several reports have demonstrated a role for inflammation in Cr(VI) toxicity, the present study aimed to apply transcriptomics to examine the global mRNA expression in human lung fibroblasts after acute (24 h) or prolonged (72 and 120 h) exposure to 0.1, 0.2 and 0.3 µg/cm2 zinc chromate, with a particular emphasis on inflammatory pathways. The results showed Cr(VI) affected the expression of multiple genes and these effects varied according to Cr(VI) concentration and exposure time. Bioinformatic analysis of RNA-Seq data based on the Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaCore databases revealed multiple inflammatory pathways were affected by Cr(VI) treatment. qRT-PCR data corroborated RNA-Seq findings. This study showed for the first time that Cr(VI) regulates key inflammatory pathways in human lung fibroblasts, providing novel insights into the mechanisms by which Cr(VI) causes lung cancer.


Assuntos
Cromo , Fibroblastos , Pulmão , Transcriptoma , Humanos , Cromo/toxicidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Cromatos/toxicidade , Compostos de Zinco/farmacologia , Compostos de Zinco/toxicidade , Linhagem Celular , Carcinogênese/efeitos dos fármacos , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Transdução de Sinais/efeitos dos fármacos
3.
Toxicol Appl Pharmacol ; 489: 117007, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901695

RESUMO

We are facing a rapidly growing geriatric population (65+) that will live for multiple decades and are challenged with environmental pollution far exceeding that of previous generations. Consequently, we currently have a poor understanding of how environmental pollution will impact geriatric health distinctly from younger populations. Few toxicology studies have considered age differences with geriatric individuals. Critically, all top ten most prevalent age-related diseases are linked to metal exposures. Hexavalent chromium [Cr(VI)] is a metal of major environmental health concern that can induce aging phenotypes and neurotoxicity. However, there are many knowledge gaps for Cr(VI) neurotoxicity, including how Cr(VI) impacts behavior. To address this, we exposed male rats across three ages (3-, 7-, and 18-months old) to Cr(VI) in drinking water (0, 0.05, 0.1 mg/L) for 90 days. These levels reflect the maximum contaminant levels determined by the World Health Organization (WHO) and the U.S. Environmental Protection Agency (US EPA). Here, we report how these Cr(VI) drinking water levels impacted rat behaviors using a battery of behavior tests, including grip strength, open field assay, elevated plus maze, Y-maze, and 3-chamber assay. We observed adult rats were the most affected age group and memory assays (spatial and social) exhibited the most significant effects. Critically, the significant effects were surprising as rats should be particularly resistant to these Cr(VI) drinking water levels due to the adjustments applied in risk assessment from rodent studies to human safety, and because rats endogenously synthesize vitamin C in their livers (vitamin C is a primary reducer of Cr[VI] to Cr[III]). Our results emphasize the need to broaden the scope of toxicology research to consider multiple life stages and suggest the current regulations for Cr(VI) in drinking water need to be revisited.


Assuntos
Envelhecimento , Comportamento Animal , Cromo , Animais , Cromo/toxicidade , Masculino , Comportamento Animal/efeitos dos fármacos , Ratos , Síndromes Neurotóxicas/etiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Fatores Etários , Água Potável , Poluentes Químicos da Água/toxicidade
4.
Toxicol Appl Pharmacol ; 479: 116711, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805091

RESUMO

Hexavalent chromium [Cr(VI)] is a human lung carcinogen with widespread exposure risks. Cr(VI) causes DNA double strand breaks that if unrepaired, progress into chromosomal instability (CIN), a key driving outcome in Cr(VI)-induced tumors. The ability of Cr(VI) to cause DNA breaks and inhibit repair is poorly understood in human lung epithelial cells, which are extremely relevant since pathology data show Cr(VI)-induced tumors originate from bronchial epithelial cells. In the present study, we considered immortalized and primary human bronchial epithelial cells. Cells were treated with zinc chromate at concentrations ranging 0.05 to 0.4µg/cm2 for acute (24 h) and prolonged (120 h) exposures. DNA double strand breaks (DSBs) were measured by neutral comet assay and the status of homologous recombination repair, the main pathway to fix Cr(VI)-induced DSBs, was measured by RAD51 foci formation with immunofluorescence, RAD51 localization with confocal microscopy and sister chromatid exchanges. We found acute and prolonged Cr(VI) exposure induced DSBs. Acute exposure induced homologous recombination repair, but prolonged exposure inhibited it resulting in chromosome instability in immortalized and primary human bronchial epithelial cells.


Assuntos
Cromo , Neoplasias , Humanos , Cromo/toxicidade , Cromo/metabolismo , Pulmão/metabolismo , Instabilidade Cromossômica , Células Epiteliais/metabolismo , Neoplasias/metabolismo , DNA/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
5.
Mol Cell Proteomics ; 20: 100041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639418

RESUMO

Cells continually degrade and replace damaged proteins. However, the high energetic demand of protein turnover generates reactive oxygen species that compromise the long-term health of the proteome. Thus, the relationship between aging, protein turnover, and energetic demand remains unclear. Here, we used a proteomic approach to measure rates of protein turnover within primary fibroblasts isolated from a number of species with diverse life spans including the longest-lived mammal, the bowhead whale. We show that organismal life span is negatively correlated with turnover rates of highly abundant proteins. In comparison with mice, cells from long-lived naked mole rats have slower rates of protein turnover, lower levels of ATP production, and reduced reactive oxygen species levels. Despite having slower rates of protein turnover, naked mole rat cells tolerate protein misfolding stress more effectively than mouse cells. We suggest that in lieu of a rapid constitutive turnover, long-lived species may have evolved more energetically efficient mechanisms for selective detection and clearance of damaged proteins.


Assuntos
Proteoma , Aminoácidos , Animais , Humanos , Cinética , Luz , Longevidade , Preparações Farmacêuticas , Proteômica , Radioisótopos , Especificidade da Espécie
6.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203427

RESUMO

Hexavalent chromium [Cr(VI)] is a known human lung carcinogen with widespread exposure in environmental and occupational settings. Despite well-known cancer risks, the molecular mechanisms of Cr(VI)-induced carcinogenesis are not well understood, but a major driver of Cr(VI) carcinogenesis is chromosome instability. Previously, we reported Cr(VI) induced numerical chromosome instability, premature centriole disengagement, centrosome amplification, premature centromere division, and spindle assembly checkpoint bypass. A key regulator of these events is securin, which acts by regulating the cleavage ability of separase. Thus, in this study we investigated securin disruption by Cr(VI) exposure. We exposed human lung cells to a particulate Cr(VI) compound, zinc chromate, for acute (24 h) and prolonged (120 h) time points. We found prolonged Cr(VI) exposure caused marked decrease in securin levels and function. After prolonged exposure at the highest concentration, securin protein levels were decreased to 15.3% of control cells, while securin mRNA quantification was 7.9% relative to control cells. Additionally, loss of securin function led to increased separase activity manifested as enhanced cleavage of separase substrates; separase, kendrin, and SCC1. These data show securin is targeted by prolonged Cr(VI) exposure in human lung cells. Thus, a new mechanistic model for Cr(VI)-induced carcinogenesis emerges with centrosome and centromere disruption as key components of numerical chromosome instability, a key driver in Cr(VI) carcinogenesis.


Assuntos
Carcinogênese , Cromo , Instabilidade Cromossômica , Humanos , Securina/genética , Separase
7.
Toxicol Appl Pharmacol ; 455: 116265, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208701

RESUMO

Besides smoking, lung cancer can be caused by other factors, including heavy metals such as cadmium, nickel, arsenic, beryllium and hexavalent chromium [Cr(VI)], which is used in multiple settings, resulting in widespread environmental and occupational exposures as well as heavy use. The mechanism by which Cr(VI) causes lung cancer is not completely understood. Currently, it is admitted chromosome instability is a key process in the mechanism of Cr(VI)-induced cancer, and previous studies have suggested Cr(VI) impacts the lung tissue in mice by triggering tissue damage and inflammation. However, the mechanism underlying Cr(VI)-induced inflammation and its exact role in lung cancer are unclear. Therefore, this review aimed to systematically examine previous studies assessing Cr(VI)-induced inflammation and to summarize the major inflammatory pathways involved in Cr(VI)-induced inflammation. In cell culture studies, COX2, VEGF, JAK-STAT, leukotriene B4 (LTB4), MAPK, NF-Ò¡B and Nrf2 signaling pathways were consistently upregulated by Cr(VI), clearly demonstrating that these pathways are involved in Cr(VI)-induced inflammation. In addition, Akt signaling was also shown to contribute to Cr(VI)-induced inflammation, although discrepant findings were reported. Few mechanistic studies were performed in animal models, in which Cr(VI) upregulated oxidative pathways, NF-kB signaling and the MAPK pathway in the lung tissue. Similar to cell culture studies, opposite effects of Cr(VI) on Akt signaling were reported. This work provides insights into the mechanisms by which Cr(VI) induces lung inflammation. However, discrepant findings and other major issues in study design, both in cell and animal models, suggest that further studies are required to unveil the mechanism of Cr(VI)-induced inflammation and its role in lung cancer.


Assuntos
Arsênio , Neoplasias Pulmonares , Animais , Camundongos , Berílio/metabolismo , Cádmio/metabolismo , Cromo/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Leucotrieno B4/metabolismo , Pulmão , Neoplasias Pulmonares/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Níquel/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Toxicol Appl Pharmacol ; 457: 116294, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283442

RESUMO

Hexavalent chromium [Cr(VI)] is a well-known and widespread environmental contaminant associated with a variety of adverse health effects, in particular lung cancer. The primary route of exposure in humans is through inhalation. Particulate forms of Cr(VI) are the most potent but in vivo studies are difficult. Intratracheal instillation requires highly trained surgical procedures which also limits the number of repeated exposures possible and thus requires high doses. Inhalation studies can deliver lower more chronic doses but are expensive and generate dangerous aerosols. We evaluated an oropharyngeal aspiration exposure route for zinc chromate particles in Wistar rats. Animals were treated once per week for 90 days. We found chromium accumulated in the lungs, blood, and reproductive tissues of all treated animals. Additionally, we found inflammatory indicators in the lung were elevated and circulating lymphocytes had increased chromosomal damage. These results show oropharyngeal aspiration provides a practicable exposure route for chronic and sub-chronic exposures of Cr(VI) particles.

9.
Toxicol Appl Pharmacol ; 438: 115890, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101437

RESUMO

Hexavalent chromium [Cr(VI)] is a global environmental pollutant and human lung carcinogen. However, the mechanisms of Cr(VI) carcinogenesis are not well defined. Cr(VI)-altered gene expression has been reported in the literature and is implicated in numerous mechanisms of Cr(VI) carcinogenesis. MicroRNAs (miRNAs) play a key role in controlling gene expression and are associated with carcinogenic mechanisms. To date no studies have evaluated global changes in miRNA expression in human cells after Cr(VI) exposure. We used RNA sequencing to evaluate how a particulate Cr(VI) compound (zinc chromate), the most potent form of Cr(VI), alters global miRNA expression after acute (24 h) or prolonged (72 and 120 h) exposure to 0.1, 0.2 and 0.3 µg/cm2 zinc chromate in an immortalized, non-cancerous human lung cell line (WTHBF-6). Particulate Cr(VI) significantly affected expression of miRNAs at all time points and concentrations tested. We also found the number of significantly downregulated miRNAs increased in a time- and concentration-dependent manner and many miRNAs were upregulated after 24 h exposure at the intermediate concentration tested. Pathway analyses of the differentially expressed miRNAs predicted miRNAs target pathways of Cr(VI) carcinogenesis in a time- and concentration-dependent manner. These data are the first to evaluate global changes in miRNA expression in human lung cells after Cr(VI) exposure and indicate miRNAs may play a key role in pathways of Cr(VI) carcinogenesis.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos/toxicidade , Cromo/toxicidade , Pulmão/efeitos dos fármacos , MicroRNAs/genética , Transdução de Sinais/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular , Cromatos/toxicidade , Expressão Gênica/efeitos dos fármacos , Humanos , Transdução de Sinais/genética , Compostos de Zinco/toxicidade
10.
Bull Environ Contam Toxicol ; 110(1): 32, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583746

RESUMO

An accurate analytical method was developed to determine selected per- and polyfluorinated alkyl substances (PFAS) at the level of parts per trillion (ppt or ng/L) in drinking water. The method included a concentration step using solid phase extraction (SPE) approach in combination with a liquid chromatography-tandem mass spectrometry system (LC-MS/MS). This method was optimized and validated for the common PFAS contaminants in drinking water. An initial demonstration of capability was established with an acceptable initial calibration, minimum reporting limit (MRL), limit of detection (LOD), initial demonstration of low system background, and initial demonstration of precision (IDP). Isotopically labeled internal standards were used for quantification. Surrogate standards were used to monitor method performance. The current method will help in better understanding of PFAS crisis by providing an efficient measurement of PFAS in water. In this study, the recoveries of four surrogates were between 84 and 113%, and calculated limit of detection (DL) and minimum reporting limits (MRL) were generally 1.0-3.0 and 5-10 ng/L, respectively.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Água Potável/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Extração em Fase Sólida/métodos , Fluorocarbonos/análise , Cromatografia Líquida de Alta Pressão/métodos , Poluentes Químicos da Água/análise
11.
Biochemistry ; 60(41): 3098-3113, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34609833

RESUMO

The MtrCDE system confers multidrug resistance to Neisseria gonorrhoeae, the causative agent of gonorrhea. Using free and directed molecular dynamics (MD) simulations, we analyzed the interactions between MtrD and azithromycin, a transport substrate of MtrD, and a last-resort clinical treatment for multidrug-resistant gonorrhea. We then simulated the interactions between MtrD and streptomycin, an apparent nonsubstrate of MtrD. Using known conformations of MtrD homologues, we simulated a potential dynamic transport cycle of MtrD using targeted MD techniques (TMD), and we noted that forces were not applied to ligands of interest. In these TMD simulations, we observed the transport of azithromycin and the rejection of streptomycin. In an unbiased, long-time scale simulation of AZY-bound MtrD, we observed the spontaneous diffusion of azithromycin through the periplasmic cleft. Our simulations show how the peristaltic motions of the periplasmic cleft facilitate the transport of substrates by MtrD. Our data also suggest that multiple transport pathways for macrolides may exist within the periplasmic cleft of MtrD.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neisseria gonorrhoeae/química , Azitromicina/química , Azitromicina/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Transporte Biológico , Ligação de Hidrogênio , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Simulação de Dinâmica Molecular , Ligação Proteica , Estreptomicina/química , Estreptomicina/metabolismo
12.
Pestic Biochem Physiol ; 168: 104636, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32711770

RESUMO

Synergism and metabolic studies were conducted to identify the resistance mechanism against indoxacarb in two Choristoneura rosaceana (Harris) field populations compared to a susceptible population. The synergism study was carried out using diet incorporation bioassay for indoxacarb and the three synergists PBO, DEM, and DEF. The metabolic study consists of indoxacarb in vitro reaction with fifth instar larvae 12,000 g midgut supernatant or with pre-inhibited (in vivo by the esterases inhibitor DEF) fifth instar larvae 12,000 g midgut supernatant at different incubation times. In both susceptible and cherry populations, only DEF significantly synergized indoxacarb with a synergism ratio (SR) of 6.5 and 22.6-fold respectively indicating an involvement of esterases in the both populations. In the apple population, all synergists PBO, DEM, and DEF significantly synergized indoxacarb with SR of 9.6, 7.7, and 285.6-fold respectively indicating a complex resistance case with the possible involvement of all three metabolic resistance mechanisms with the central role of esterase enzymes. In vitro, the indoxacarb (DPX-JW062) was very rapidly metabolized within 5 min into small molecules in the lower portion of the metabolic pathway when it reacted with the midgut supernatant of each population. None of the metabolites in the upper portion of the metabolic pathway were detected at any incubation time including the potent sodium channel blocker DCJW metabolite. The two field populations showed significantly higher rates of metabolism of DPX-JW062 compared to the susceptible population at five min of incubation and that may explain the presence of indoxacarb resistance. In the second part of the in vitro study, the bio-transformation of DPX-JW062 was remarkably decreased when it reacted with the pre-inhibited (by DEF) midgut supernatant of each population. Additionally, the degradation of metabolites in the upper portion of the metabolic pathway remarkably decreased, which resulted in accumulation of DCJW and MP819 metabolites. The accumulation of DCJW metabolite under the pre-inhibited midgut supernatants treatment provided a persuasive explanation of the synergistic impact of esterase inhibitor DEF on indoxacarb in C. rosaceana.


Assuntos
Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Animais , Resistência a Inseticidas/efeitos dos fármacos , Oxazinas
13.
Toxicol Appl Pharmacol ; 376: 58-69, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078588

RESUMO

Marine metal pollution is an emerging concern for human, animal, and ecosystem health. We considered metal pollution in the Sea of Cortez, which is a relatively isolated sea rich in biodiversity. Here there are potentially significant anthropogenic inputs of pollution from agriculture and metal mining. We considered the levels of 23 heavy metals and selenium in seven distinct cetacean species found in the area. Our efforts considered two different periods of time: 1999 and 2016/17. We considered the metal levels in relation to (1) all species together across years, (2) differences between suborders Odontoceti and Mysticeti, (3) each species individually across years, and (4) gender differences for each of these comparisons. We further compared metal levels found in sperm whale skin samples collected during these voyages to a previous voyage in 1999, to assess changes in metal levels over a longer timescale. The metals Mg, Fe, Al, and Zn were found at the highest concentrations across all species and all years. For sperm whales, we observed decreased metal levels from 1999 to 2016/2017, except for iron (Fe), nickel (Ni), and chromium (Cr), which either increased or did not change during this time period. These results indicate a recent change in the metal input to the Sea of Cortez, which may indicate a decreased concern for human, animal, and ecosystem health for some metals, but raises concern for the genotoxic metals Cr and Ni. This work was supported by NIEHS grant ES016893 (J.P.W.) and numerous donors to the Wise Laboratory.


Assuntos
Cetáceos/metabolismo , Saúde Ambiental/métodos , Metais Pesados/análise , Poluição Química da Água/análise , Animais , Balaenoptera/metabolismo , Feminino , Jubarte/metabolismo , Masculino , Metais Pesados/toxicidade , Oceano Pacífico , Selênio/análise , Selênio/toxicidade , Fatores Sexuais , Pele/química , Especificidade da Espécie , Cachalote/metabolismo , Fatores de Tempo , Poluentes Químicos da Água , Poluição Química da Água/efeitos adversos , Baleias Piloto/metabolismo
14.
Toxicol Appl Pharmacol ; 376: 70-81, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108106

RESUMO

Evaluating health risks of environmental contaminants can be better achieved by considering toxic impacts across species. Hexavalent chromium [Cr(VI)] is a marine pollutant and global environmental contaminant. While Cr(VI) has been identified as a human lung carcinogen, health effects in marine species are poorly understood. Little is known about how Cr(VI) might impact humans and marine species differently. This study used a One Environmental Health Approach to compare the cytotoxicity and genotoxicity of particulate Cr(VI) in human and leatherback sea turtle (Dermochelys coriacea) lung fibroblasts. Leatherbacks may experience prolonged exposures to environmental contaminants and provide insight to how environmental exposures affect health across species. Since humans and leatherbacks may experience prolonged exposure to Cr(VI), and prolonged Cr(VI) exposure leads to carcinogenesis in humans, in this study we considered both acute and prolonged exposures. We found particulate Cr(VI) induced cytotoxicity in leatherback cells comparable to human cell data supporting current research that shows Cr(VI) impacts health across species. To better understand mechanisms of Cr(VI) toxicity we assessed the genotoxic effects of particulate Cr(VI) in human and leatherback cells. Particulate Cr(VI) induced similar genotoxicity in both cell lines, however, human cells arrested at lower concentrations than leatherback cells. We also measured intracellular Cr ion concentrations and found after prolonged exposure human cells accumulated more Cr than leatherback cells. These data indicate Cr(VI) is a health concern for humans and leatherbacks. The data also suggest humans and leatherbacks respond to chemical exposure differently, possibly leading to the discovery of species-specific protective mechanisms.


Assuntos
Carcinógenos Ambientais/toxicidade , Cromo/toxicidade , Saúde Ambiental , Pulmão/efeitos dos fármacos , Mutagênicos/toxicidade , Tartarugas , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromo/metabolismo , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Exposição Ambiental , Saúde Ambiental/métodos , Fibroblastos/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Especificidade da Espécie , Fatores de Tempo , Poluentes Químicos da Água
15.
Am J Orthod Dentofacial Orthop ; 156(1): 13-28.e1, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31256826

RESUMO

The Board of Trustees of the American Association of Orthodontists asked a panel of medical and dental experts in sleep medicine and dental sleep medicine to create a document designed to offer guidance to practicing orthodontists on the suggested role of the specialty of orthodontics in the management of obstructive sleep apnea. This White Paper presents a summary of the Task Force's findings and recommendations.


Assuntos
Ortodontia/métodos , Ortodontia/normas , Ortodontistas , Apneia Obstrutiva do Sono/terapia , Academias e Institutos , Humanos , Aparelhos Ortodônticos , Médicos , Polissonografia/métodos , Prevalência , Radiografia Dentária , Fatores de Risco , Índice de Gravidade de Doença , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/epidemiologia , Apneia Obstrutiva do Sono/etiologia , Cirurgiões , Resultado do Tratamento , Estados Unidos
16.
Toxicol Appl Pharmacol ; 331: 101-107, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28554658

RESUMO

Particulate hexavalent chromium (Cr(VI)) is a human lung carcinogen and a human health concern. The induction of structural chromosome instability is considered to be a driving mechanism of Cr(VI)-induced carcinogenesis. Homologous recombination repair protects against Cr(VI)-induced chromosome damage, due to its highly accurate repair of Cr(VI)-induced DNA double strand breaks. However, recent studies demonstrate Cr(VI) inhibits homologous recombination repair through the misregulation of RAD51. RAD51 is an essential protein in HR repair that facilitates the search for a homologous sequence. Recent studies show prolonged Cr(VI) exposure prevents proper RAD51 subcellular localization, causing it to accumulate in the cytoplasm. Since nuclear import of RAD51 is crucial to its function, this study investigated the effect of Cr(VI) on the RAD51 nuclear import mediators, RAD51C and BRCA2. We show acute (24h) Cr(VI) exposure induces the proper localization of RAD51C and BRCA2. In contrast, prolonged (120h) exposure increased the cytoplasmic localization of both proteins, although RAD51C localization was more severely impaired. These results correlate temporally with the previously reported Cr(VI)-induced RAD51 cytoplasmic accumulation. In addition, we found Cr(VI) does not inhibit interaction between RAD51 and its nuclear import mediators. Altogether, our results suggest prolonged Cr(VI) exposure inhibits the nuclear import of RAD51C, and to a lesser extent, BRCA2, which results in the cytoplasmic accumulation of RAD51. Cr(VI)-induced inhibition of nuclear import may play a key role in its carcinogenic mechanism since the nuclear import of many tumor suppressor proteins and DNA repair proteins is crucial to their function.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Cromatos/toxicidade , Material Particulado/toxicidade , Rad51 Recombinase/antagonistas & inibidores , Rad51 Recombinase/metabolismo , Compostos de Zinco/toxicidade , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Linhagem Celular Transformada , Cromatos/administração & dosagem , Cricetinae , Cricetulus , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Humanos , Material Particulado/administração & dosagem , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Compostos de Zinco/administração & dosagem
17.
Toxicol Appl Pharmacol ; 331: 18-23, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28411036

RESUMO

Chromosome instability is a common feature of cancers that forms due to the misrepair of DNA double strand breaks. Homologous recombination (HR) repair is a high fidelity DNA repair pathway that utilizes a homologous DNA sequence to accurately repair such damage and protect the genome. Prolonged exposure (>72h) to the human lung carcinogen, particulate hexavalent chromium (Cr(VI)), inhibits HR repair, resulting in increased chromosome instability in human cells. Comparative studies have shown acute Cr(VI) exposure induces less chromosome damage in whale cells than human cells, suggesting investigating the effect of this carcinogen in other species may inform efforts to prevent Cr(VI)-induced chromosome instability. Thus, the goal of this study was to determine the effect of prolonged Cr(VI) exposure on HR repair and clastogenesis in North Atlantic right whale (Eubalaena glacialis) lung cells. We show particulate Cr(VI) induces HR repair activity after both acute (24h) and prolonged (120h) exposure in North Atlantic right whale cells. Although the RAD51 response was lower following prolonged Cr(VI) exposure compared to acute exposure, the response was sufficient for HR repair to occur. In accordance with active HR repair, no increase in Cr(VI)-induced clastogenesis was observed with increased exposure time. These results suggest prolonged Cr(VI) exposure affects HR repair and genomic stability differently in whale and human lung cells. Future investigation of the differences in how human and whale cells respond to chemical carcinogens may provide valuable insight into mechanisms of preventing chemical carcinogenesis.


Assuntos
Cromatos/toxicidade , Pulmão/citologia , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Reparo de DNA por Recombinação/efeitos dos fármacos , Compostos de Zinco/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Cromatos/administração & dosagem , Relação Dose-Resposta a Droga , Pulmão/fisiologia , Material Particulado/administração & dosagem , Reparo de DNA por Recombinação/fisiologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/fisiologia , Fatores de Tempo , Baleias , Compostos de Zinco/administração & dosagem
18.
J Drug Deliv Sci Technol ; 39: 324-333, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29503667

RESUMO

Receptor-independent cellular uptake of small molecule therapeutics is limited by their physical interaction with the negatively charged surface of cellular membranes. Passive diffusion through the hydrophobic membrane bilayer follows this process. Unless specific carriers exist in the biological membrane, such interactions limit therapeutics to those that are hydrophobic with modest positive charge at physiological pH. Small negatively charged molecules are therefore not efficient as therapeutics. To enable delivery of such molecules into eukaryotic cells, cationic branched polymers with tetraalkylammonium pendant groups were synthesized by copolymerization of a functional monomer (glycidyl methacrylate) with degradable and non-degradable divinyl crosslinkers in the presence of an efficient chain transfer agent, CBr4, followed by reaction of the multiple pendant epoxide groups and most of the alkyl bromide chain ends with amines. Cationic branched polymers with covalently attached fluorescent labels entered human cancerous and non-cancerous cells. The non-labeled analogues were able to carry anionic cargo (carboxyfluorescein) into the cells, while no uptake was observed in the absence of the cationic carriers. Most of the polymers were not significantly toxic at the concentrations used. This pilot study showed that cellular uptake of anionic small molecules can be promoted even in the absence of natural uptake mechanisms.

19.
Toxicol Appl Pharmacol ; 296: 54-60, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908176

RESUMO

Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general.


Assuntos
Cromo/toxicidade , Instabilidade Cromossômica/efeitos dos fármacos , Instabilidade Cromossômica/fisiologia , Urotélio/efeitos dos fármacos , Urotélio/fisiologia , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Humanos , Urotélio/patologia
20.
BMC Public Health ; 16: 142, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26869268

RESUMO

BACKGROUND: Manganese (Mn) is an essential element for humans, but exposure to high levels has been associated with adverse developmental outcomes. Early epidemiological studies evaluating the effect of Mn on fetal growth are inconsistent. METHODS: We investigated the association between maternal urinary Mn during pregnancy and the risk of low birth weight (LBW). Mn concentrations in maternal urine samples collected before delivery were measured in 816 subjects (204 LBW cases and 612 matched controls) recruited between 2012 and 2014 in Hubei Province, China. RESULTS: The median Mn concentration in maternal urine was 0.69 µg/g creatinine. Compared to the medium tertile of Mn levels, an increased risk of LBW was observed for the lowest tertile (≤0.30 µg/g creatinine) [adjusted odds ratio (OR) = 1.28; 95 % confidence interval (CI) = 0.67, 2.45], and a significantly increased risk of LBW was observed for the highest tertile (≥1.16 µg/g creatinine) [adjusted OR = 2.04; 95 % CI = 1.12, 3.72]. A curvilinear relationship between maternal urinary Mn and risk of LBW was observed, showing that the concentration at 0.43 µg/g creatinine was the point of inflection. Similar associations were observed among the mothers with female infants and among the younger mothers < 28 years old. However, among the mothers with male infants or the older mothers ≥ 28 years old, only higher levels of Mn were positively associated with LBW. CONCLUSIONS: Lower or higher levels of maternal urinary Mn are associated with LBW, though only the association of LBW risk and higher levels of Mn was statistically significant. The findings also show that the associations may vary by maternal age and infant sex, but require confirmation in other populations.


Assuntos
Recém-Nascido de Baixo Peso , Manganês/urina , Adulto , Estudos de Casos e Controles , China , Feminino , Humanos , Recém-Nascido , Masculino , Idade Materna , Razão de Chances , Gravidez , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA