Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-31010865

RESUMO

Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that can cause chronic lung infections in patients with cystic fibrosis (CF). The current preferred treatment for CF lung infections includes inhaled tobramycin (TOB); however, studies suggest TOB cannot effectively inhibit biofilm formation. Using an NIH small compounds drug library approved for safe use in humans, we identified rifaximin (RFX), a semisynthetic, rifamycin family, nonsystemic antibiotic that inhibits alginate production and growth in P. aeruginosa Inhibition of alginate production was further analyzed using the uronic acid carbazole assay and a promoter reporter assay that measures the transcription of the alginate biosynthetic operon. Compared to TOB, RFX significantly reduced alginate production in laboratory and CF sputum isolates of P. aeruginosa In addition, RFX showed a narrow range of MICs when measured with multidrug-resistant bacterial species of clinical relevance, synergistic activities with TOB or amikacin against clinical isolates, as well as reduction toward in vitro preformed biofilms. In C57BL/6 mice, penetration of nebulized TOB into the lungs was shown at a higher level than that of RFX. Further, in vivo assessment using a DBA/2 mouse lung infection model found increased survival rates with a single-dose treatment of nebulized RFX and decreased P. aeruginosa PAO1 bioburden with a multiple-dose treatment of RFX plus TOB. In addition, mice treated with a single exposure to dimethyl sulfoxide (DMSO), a solvent that dissolves RFX, showed no apparent toxicity. In summary, RFX may be used to supplement TOB inhalation therapy to increase efficacy against P. aeruginosa biofilm infections.


Assuntos
Antibacterianos/farmacologia , Pneumonia/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Rifaximina/farmacologia , Tobramicina/farmacologia , Alginatos/metabolismo , Amicacina/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Fibrose Cística/microbiologia , Modelos Animais de Doenças , Feminino , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Testes de Sensibilidade Microbiana/métodos , Pneumonia/microbiologia , Infecções por Pseudomonas/microbiologia , Escarro/microbiologia
2.
Bioorg Med Chem Lett ; 26(4): 1305-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26826023

RESUMO

Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in diseases of the lungs. The extracellular polymeric substances (EPS) of respiratory Pseudomonas biofilms are largely comprised of anionic molecules such as rhamnolipids and alginate that promote a mucoid phenotype. In this Letter, we examine the ability of negatively-charged fluoroquinolones to transverse the EPS and inhibit the growth of mucoid P. aeruginosa. Anionic fluoroquinolones were further compared with standard antibiotics via a novel microdiffusion assay to evaluate drug penetration through pseudomonal alginate and respiratory mucus from a patient with cystic fibrosis.


Assuntos
Antibacterianos/química , Fluoroquinolonas/química , Pseudomonas aeruginosa/fisiologia , Ânions/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fluoroquinolonas/síntese química , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana
3.
Mol Microbiol ; 93(3): 415-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913916

RESUMO

In Pseudomonas aeruginosa, alginate overproduction, also known as mucoidy, is negatively regulated by the transmembrane protein MucA, which sequesters the alternative sigma factor AlgU. MucA is degraded via a proteolysis pathway that frees AlgU from sequestration, activating alginate biosynthesis. Initiation of this pathway normally requires two signals: peptide sequences in unassembled outer-membrane proteins (OMPs) activate the AlgW protease, and unassembled lipopolysaccharides bind periplasmic MucB, releasing MucA and facilitating its proteolysis by activated AlgW. To search for novel alginate regulators, we screened a transposon library in the non-mucoid reference strain PAO1, and identified a mutant that confers mucoidy through overexpression of a protein encoded by the chaperone-usher pathway gene cupB5. CupB5-dependent mucoidy occurs through the AlgU pathway and can be reversed by overexpression of MucA or MucB. In the presence of activating OMP peptides, peptides corresponding to a region of CupB5 needed for mucoidy further stimulated AlgW cleavage of MucA in vitro. Moreover, the CupB5 peptide allowed OMP-activated AlgW cleavage of MucA in the presence of the MucB inhibitor. These results support a novel mechanism for conversion to mucoidy in which the proteolytic activity of AlgW and its ability to compete with MucB for MucA is mediated by independent peptide signals.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Alginatos , Elementos de DNA Transponíveis , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Chaperonas Moleculares/metabolismo , Mutação , Sinais Direcionadores de Proteínas , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo
4.
Antimicrob Agents Chemother ; 57(10): 4707-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23856776

RESUMO

Antimicrobial peptides (AMPs) can cause lysis of target bacteria by directly inserting themselves into the lipid bilayer. This killing mechanism confounds the identification of the intracellular targets of AMPs. To circumvent this, we used a shuttle vector containing the inducible expression of a human cathelicidin-related AMP, LL-37, to examine its effect on Escherichia coli TOP10 under aerobic and anaerobic growth conditions. Induction of LL-37 caused growth inhibition and alteration in cell morphology to a filamentous phenotype. Further examination of the E. coli cell division protein FtsZ revealed that LL-37 did not interact with FtsZ. Moreover, intracellular expression of LL-37 results in the enhanced production of reactive oxygen species (ROS), causing lethal membrane depolarization under aerobic conditions. Additionally, the membrane permeability was increased after intracellular expression of LL37 under both aerobic and anaerobic conditions. Transcriptomic analysis revealed that intracellular LL-37 mainly affected the expression of genes related to energy production and carbohydrate metabolism. More specifically, genes related to oxidative phosphorylation under both aerobic and anaerobic growth conditions were affected. Collectively, our current study demonstrates that intracellular expression of LL-37 in E. coli can inhibit growth under aerobic and anaerobic conditions. While we confirmed that the generation of ROS is a bactericidal mechanism for LL-37 under aerobic growth conditions, we also found that the intracellular accumulation of cationic LL-37 influences the redox and ion status of the cells under both growth conditions. These data suggest that there is a new AMP-mediated bacterial killing mechanism that targets energy metabolism.


Assuntos
Catelicidinas/metabolismo , Escherichia coli/metabolismo , Aerobiose , Anaerobiose , Peptídeos Catiônicos Antimicrobianos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
5.
BMC Microbiol ; 13: 232, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24138584

RESUMO

BACKGROUND: Alginate overproduction in P. aeruginosa, also referred to as mucoidy, is a poor prognostic marker for patients with cystic fibrosis (CF). We previously reported the construction of a unique mucoid strain which overexpresses a small envelope protein MucE leading to activation of the protease AlgW. AlgW then degrades the anti-sigma factor MucA thus releasing the alternative sigma factor AlgU/T (σ(22)) to initiate transcription of the alginate biosynthetic operon. RESULTS: In the current study, we mapped the mucE transcriptional start site, and determined that P(mucE) activity was dependent on AlgU. Additionally, the presence of triclosan and sodium dodecyl sulfate was shown to cause an increase in P(mucE) activity. It was observed that mucE-mediated mucoidy in CF isolates was dependent on both the size of MucA and the genotype of algU. We also performed shotgun proteomic analysis with cell lysates from the strains PAO1, VE2 (PAO1 with constitutive expression of mucE) and VE2ΔalgU (VE2 with in-frame deletion of algU). As a result, we identified nine algU-dependent and two algU-independent proteins that were affected by overexpression of MucE. CONCLUSIONS: Our data indicates there is a positive feedback regulation between MucE and AlgU. Furthermore, it seems likely that MucE may be part of the signal transduction system that senses certain types of cell wall stress to P. aeruginosa.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Peptídeo Hidrolases/biossíntese , Pseudomonas aeruginosa/genética , Fator sigma/metabolismo , Transcrição Gênica , Alginatos , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição
6.
J Bacteriol ; 194(23): 6617, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23144378

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that establishes a chronic lung infection in individuals afflicted with cystic fibrosis. Here, we announce the draft genome of P. aeruginosa strain PAO579, an alginate-overproducing derivative of strain PAO381.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Pseudomonas aeruginosa/genética , Análise de Sequência de DNA , Alginatos/metabolismo , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Dados de Sequência Molecular , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/metabolismo
7.
Mol Microbiol ; 81(2): 554-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21631603

RESUMO

Alginate overproduction by P. aeruginosa strains, also known as mucoidy, is associated with chronic lung infections in cystic fibrosis (CF). It is not clear how alginate induction occurs in the wild-type (wt) mucA strains. When grown on Pseudomonas isolation agar (PIA), P. aeruginosa strains PAO1 and PA14 are non-mucoid, producing minimal amounts of alginate. Here we report the addition of ammonium metavanadate (AMV), a phosphatase inhibitor, to PIA (PIA-AMV) induced mucoidy in both these laboratory strains and early lung colonizing non-mucoid isolates with a wt mucA. This phenotypic switch was reversible depending on the availability of vanadate salts and triclosan, a component of PIA. Alginate induction in PAO1 on PIA-AMV was correlated with increased proteolytic degradation of MucA, and required envelope proteases AlgW or MucP, and a two-component phosphate regulator, PhoP. Other changes included the addition of palmitate to lipid A, a phenotype also observed in chronic CF isolates. Proteomic analysis revealed the upregulation of stress chaperones, which was confirmed by increased expression of the chaperone/protease MucD. Altogether, these findings suggest a model of alginate induction and the PIA-AMV medium may be suitable for examining early lung colonization phenotypes in CF before the selection of the mucA mutants.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Triclosan/metabolismo , Vanadatos/metabolismo , Alginatos , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Proteoma/análise
8.
J Vis Exp ; (85)2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24637508

RESUMO

Pseudomonas aeruginosa is a Gram-negative, environmental bacterium with versatile metabolic capabilities. P. aeruginosa is an opportunistic bacterial pathogen which establishes chronic pulmonary infections in patients with cystic fibrosis (CF). The overproduction of a capsular polysaccharide called alginate, also known as mucoidy, promotes the formation of mucoid biofilms which are more resistant than planktonic cells to antibiotic chemotherapy and host defenses. Additionally, the conversion from the nonmucoid to mucoid phenotype is a clinical marker for the onset of chronic infection in CF. Alginate overproduction by P. aeruginosa is an endergonic process which heavily taxes cellular energy. Therefore, alginate production is highly regulated in P. aeruginosa. To better understand alginate regulation, we describe a protocol using the mini-himar1 transposon mutagenesis for the identification of novel alginate regulators in a prototypic strain PAO1. The procedure consists of two basic steps. First, we transferred the mini-himar1 transposon (pFAC) from host E. coli SM10/λpir into recipient P. aeruginosa PAO1 via biparental conjugation to create a high-density insertion mutant library, which were selected on Pseudomonas isolation agar plates supplemented with gentamycin. Secondly, we screened and isolated the mucoid colonies to map the insertion site through inverse PCR using DNA primers pointing outward from the gentamycin cassette and DNA sequencing. Using this protocol, we have identified two novel alginate regulators, mucE (PA4033) and kinB (PA5484), in strain PAO1 with a wild-type mucA encoding the anti-sigma factor MucA for the master alginate regulator AlgU (AlgT, σ(22)). This high-throughput mutagenesis protocol can be modified for the identification of other virulence-related genes causing change in colony morphology.


Assuntos
Elementos de DNA Transponíveis , Mutagênese Insercional/métodos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Alginatos , Proteínas de Ligação a DNA/genética , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Transposases/genética
9.
Pathog Dis ; 70(2): 185-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24115673

RESUMO

In this study, we performed whole-genome complementation using a PAO1-derived cosmid library, coupled with in vitro transposon mutagenesis, to identify gene locus PA1494 as a novel inhibitor of alginate overproduction in P. aeruginosa strains possessing a wild-type mucA.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Alginatos , Elementos de DNA Transponíveis , Teste de Complementação Genética , Ácido Glucurônico/biossíntese , Ácido Glucurônico/genética , Ácidos Hexurônicos , Mutagênese Insercional
10.
PLoS One ; 8(8): e72329, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991093

RESUMO

Alginate overproduction, or mucoidy, plays an important role in the pathogenesis of P. aeruginosa lung infection in cystic fibrosis (CF). Mucoid strains with mucA mutations predominantly populate in chronically-infected patients. However, the mucoid strains can revert to nonmucoidy in vitro through suppressor mutations. We screened a mariner transposon library using CF149, a non-mucoid clinical isolate with a misssense mutation in algU (AlgU(A61V)). The wild type AlgU is a stress-related sigma factor that activates transcription of alginate biosynthesis. Three mucoid mutants were identified with transposon insertions that caused 1) an overexpression of AlgU(A61V), 2) an overexpression of the stringent starvation protein A (SspA), and 3) a reduced expression of the major sigma factor RpoD (σ(70)). Induction of AlgU(A61V) in trans caused conversion to mucoidy in CF149 and PAO1DalgU, suggesting that AlgU(A61V) is functional in activating alginate production. Furthermore, the level of AlgU(A61V) was increased in all three mutants relative to CF149. However, compared to the wild type AlgU, AlgU(A61V) had a reduced activity in promoting alginate production in PAO1ΔalgU. SspA and three other anti-σ(70) orthologues, P. aeruginosa AlgQ, E. coli Rsd, and T4 phage AsiA, all induced mucoidy, suggesting that reducing activity of RpoD is linked to mucoid conversion in CF149. Conversely, RpoD overexpression resulted in suppression of mucoidy in all mucoid strains tested, indicating that sigma factor competition can regulate mucoidy. Additionally, an RpoD-dependent promoter (PssrA ) was more active in non-mucoid strains than in isogenic mucoid variants. Altogether, our results indicate that the anti-σ(70) factors can induce conversion to mucoidy in P. aeruginosa CF149 with algU-suppressor mutation via modulation of RpoD.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Pseudomonas aeruginosa/metabolismo , Fator sigma/metabolismo , Alginatos , Western Blotting , Fibrose Cística/complicações , Elementos de DNA Transponíveis , Eletroforese em Gel de Poliacrilamida , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Humanos , Muco , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/fisiopatologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real
11.
Genome Announc ; 1(5)2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24115549

RESUMO

A mutation in the mucA gene, which encodes a negative regulator of alginate production in Pseudomonas aeruginosa, is the main mechanism underlying the conversion to mucoidy in clinical isolates from patients with cystic fibrosis (CF). Here, we announce the draft genome sequence of the stable alginate-overproducing mucoid strain P. aeruginosa PAO581 with a mucA25 mutation, a derivative from the nonmucoid strains P. aeruginosa PAO381 and PAO1.

12.
Genome Announc ; 1(5)2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24115552

RESUMO

Alginate overproduction by Pseudomonas aeruginosa, or mucoidy, plays an important role in the pathogenesis of chronic lung infections in cystic fibrosis (CF) patients. Here we report the draft genome sequence of a clinical isolate of mucoid P. aeruginosa strain C7447m from a CF patient with chronic lung infection.

13.
Genome Announc ; 1(6)2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24336371

RESUMO

The small envelope protein MucE and the sensor kinase KinB are a positive and negative alginate regulator, respectively. Here, we announce the draft genome sequences of the alginate-overproducing variants Pseudomonas aeruginosa PAO1-VE2 (PAO1 with constitutive expression of mucE) and PAO1-VE13 (PAO1 with kinB inactivated). Both mutants were generated from a transposon mutagenesis screen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA