Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 30(36): 10918-25, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25137089

RESUMO

Ligand exchange of hydrophilic molecules on the surface of hydrophobic iron oxide nanoparticles produced via thermal decomposition of chelated iron precursors is a common method for producing aqueous suspensions of particles for biomedical applications. Despite the wide use, relatively little is understood about the efficiency of ligand exchange on the surface of iron oxide nanoparticles and how much of the hydrophobic ligand is removed. To address this issue, we utilized a radiotracer technique to track the exchange of a radiolabeled (14)C-oleic acid ligand with hydrophilic ligands on the surface of magnetite nanoparticles. Iron oxide nanoparticles functionalized with (14)C-oleic acid were modified with poly(ethylene glycol) with terminal functional groups including, L-3,4-dihydroxyphenylalanine, a nitrated L-3,4-dihydroxyphenylalanine, carboxylic acid, a phosphonate, and an amine. Following ligand exchange, the nanoparticles and byproducts were analyzed using liquid scintillation counting and inductively coupled plasma mass spectroscopy. The labeled and unlabeled particles were further characterized by transmission electron microscopy and dynamic light scattering to determine particle size, hydrodynamic diameter, and zeta potential. The unlabeled particles were characterized via thermogravimetric analysis and vibrating sample magnetometry. Radioanalytical determination of the (14)C from (14)C-oleic acid was used to calculate the amount of oleic acid remaining on the surface of the particles after purification and ligand exchange. There was a significant loss of oleic acid on the surface of the particles after ligand exchange with amounts varying for the different functional binding groups on the poly(ethylene glycol). Nonetheless, all samples demonstrated some residual oleic acid associated with the particles. Quantification of the oleic acid remaining after ligand exchange reveals a binding hierarchy in which catechol derived anchor groups displace oleic acid on the surface of the nanoparticles better than the phosphonate, followed by the amine and carboxylic acid groups. Furthermore, the results show that these ligand exchange reactions do not necessarily occur to completion as is often assumed, thus leaving a residual amount of oleic acid on the surface of the particles. A thorough analysis of ligand exchange is required to develop nanoparticles that are suitable for their desired application.


Assuntos
Nanopartículas de Magnetita/química , Ácido Oleico/análise , Ácido Oleico/química , Isótopos de Carbono , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Tamanho da Partícula , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Propriedades de Superfície
2.
Sci Total Environ ; 841: 156596, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35691349

RESUMO

Field lysimeters tests examined leaching of technetium-99 (99Tc) from two types of cementitious waste forms and found that the presence of blast furnace slag reduced the overall leaching of 99Tc from the waste form. The two cementitious waste forms were a slag-grout 45%/45%/10% mixture of fly ash, blast furnace slag, and cement, respectively, referred to as slag-grout or a 55%/45% mixture of cement and fly ash, respectively, referred to here simply as cement. Duplicate sources of each composition were buried in four lysimeters for approximately 10 months to evaluate leaching characteristics under natural meteorological conditions in South Carolina, USA. Effluent samples were collected four times during the experiment, and the distribution of 99Tc in the sediment was determined by destructively segmenting the lysimeters at the end of the experiment. The transport of Tc within the lysimeter was simulated by assuming advection, dispersion, and sorption in partially saturated porous media, and by using a shrinking-core type approximation for the release of Tc from the source. The shrinking-core model predicted that the oxidation front created by the oxygenated infiltrating groundwater moved into the cementitious source at a rate of 14 µm/day. As this front moved through the source, Tc(IV) was oxidized to the highly mobile Tc(VII) (as TcO4-) species, which then was transported through the sediment primarily via advection due to a small partitioning coefficient (Csolid/Caq; Kd = 0.14 mL/g). The simulations predicted a cycle of accumulation of Tc in sediment at the source between rainfall events, followed by downward advection due to infiltration during rainfall events. The anomalous upward movement of Tc peak was predicted to be due to upward flux caused by evaporation after the experiment was terminated by capping the lysimeter. These experiments demonstrate that Tc leaching from cementitious waste forms under simulated vadose zone oxidizing conditions can be reasonably approximated by the shrinking core model, and the migration of Tc through the sediment is profoundly influenced by the presence of slag in the grout formulation and hydraulic conditions due to the low sorption affinity of TcO4-.


Assuntos
Cinza de Carvão , Água Subterrânea , Oxirredução , South Carolina , Tecnécio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA