Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(43): 11072-11077, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297417

RESUMO

Elongation factor P (EF-P) is a universally conserved translation factor that alleviates ribosome pausing at polyproline (PPX) motifs by facilitating peptide bond formation. In the absence of EF-P, PPX peptide bond formation can limit translation rate, leading to pleotropic phenotypes including slowed growth, increased antibiotic sensitivity, and loss of virulence. In this study, we observe that many of these phenotypes are dependent on growth rate. Limiting growth rate suppresses a variety of detrimental phenotypes associated with ribosome pausing at PPX motifs in the absence of EF-P. Polysome levels are also similar to wild-type under slow growth conditions, consistent with global changes in ribosome queuing in cells without EF-P when growth rate is decreased. Inversely, under high protein synthesis demands, we observe that Escherichia coli lacking EF-P have reduced fitness. Our data demonstrate that EF-P-mediated relief of ribosome queuing is required to maintain proteome homeostasis under conditions of high translational demands.


Assuntos
Escherichia coli/metabolismo , Escherichia coli/fisiologia , Homeostase/fisiologia , Fatores de Alongamento de Peptídeos/metabolismo , Proteoma/metabolismo , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Elongação Traducional da Cadeia Peptídica/fisiologia , Peptídeos/metabolismo , Fenótipo , Polirribossomos/metabolismo , Ribossomos/metabolismo , Virulência/fisiologia
2.
Mol Microbiol ; 106(2): 236-251, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28787546

RESUMO

Translation elongation factor P (EF-P) in Bacillus subtilis is required for a form of surface migration called swarming motility. Furthermore, B. subtilis EF-P is post-translationally modified with a 5-aminopentanol group but the pathway necessary for the synthesis and ligation of the modification is unknown. Here we determine that the protein YmfI catalyzes the reduction of EF-P-5 aminopentanone to EF-P-5 aminopentanol. In the absence of YmfI, accumulation of 5-aminopentanonated EF-P is inhibitory to swarming motility. Suppressor mutations that enhanced swarming in the absence of YmfI were found at two positions on EF-P, including one that changed the conserved modification site (Lys 32) and abolished post-translational modification. Thus, while modification of EF-P is thought to be essential for EF-P activity, here we show that in some cases it can be dispensable. YmfI is the first protein identified in the pathway leading to EF-P modification in B. subtilis, and B. subtilis encodes the first EF-P ortholog that retains function in the absence of modification.


Assuntos
Oxirredutases do Álcool/metabolismo , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Ácidos Carboxílicos , Movimento Celular/genética , Fatores de Alongamento de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional
3.
J Biol Chem ; 291(21): 10976-85, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27002156

RESUMO

Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys(32) of B. subtilis EF-P that is required for swarming motility. A fluorescent in vivo B. subtilis reporter system identified peptide motifs whose efficient synthesis was most dependent on 5-aminopentanol EF-P. Examination of the B. subtilis genome sequence showed that these EF-P-dependent peptide motifs were represented in flagellar genes. Taken together, these data show that, in B. subtilis, a previously uncharacterized posttranslational modification of EF-P can modulate the synthesis of specific diprolyl motifs present in proteins required for swarming motility.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Fatores de Alongamento de Peptídeos/fisiologia , Motivos de Aminoácidos , Bacillus subtilis/citologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genes Bacterianos , Lisina/química , Movimento , Pentanóis/química , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Open Biol ; 9(7): 190051, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31288624

RESUMO

Many antibiotics available in the clinic today directly inhibit bacterial translation. Despite the past success of such drugs, their efficacy is diminishing with the spread of antibiotic resistance. Through the use of ribosomal modifications, ribosomal protection proteins, translation elongation factors and mistranslation, many pathogens are able to establish resistance to common therapeutics. However, current efforts in drug discovery are focused on overcoming these obstacles through the modification or discovery of new treatment options. Here, we provide an overview for common mechanisms of resistance to translation-targeting drugs and summarize several important breakthroughs in recent drug development.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Biossíntese de Proteínas/fisiologia , Animais , Descoberta de Drogas , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Humanos , Terapia de Alvo Molecular/métodos , Biossíntese de Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Ribossômicas/efeitos dos fármacos , Proteínas Ribossômicas/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
5.
mBio ; 9(2)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615499

RESUMO

Elongation factor P (EF-P) is a ubiquitous translation factor that facilitates translation of polyproline motifs. In order to perform this function, EF-P generally requires posttranslational modification (PTM) on a conserved residue. Although the position of the modification is highly conserved, the structure can vary widely between organisms. In Bacillus subtilis, EF-P is modified at Lys32 with a 5-aminopentanol moiety. Here, we use a forward genetic screen to identify genes involved in 5-aminopentanolylation. Tandem mass spectrometry analysis of the PTM mutant strains indicated that ynbB, gsaB, and ymfI are required for modification and that yaaO, yfkA, and ywlG influence the level of modification. Structural analyses also showed that EF-P can retain unique intermediate modifications, suggesting that 5-aminopentanol is likely directly assembled on EF-P through a novel modification pathway. Phenotypic characterization of these PTM mutants showed that each mutant does not strictly phenocopy the efp mutant, as has previously been observed in other organisms. Rather, each mutant displays phenotypic characteristics consistent with those of either the efp mutant or wild-type B. subtilis depending on the growth condition. In vivo polyproline reporter data indicate that the observed phenotypic differences result from variation in both the severity of polyproline translation defects and altered EF-P context dependence in each mutant. Together, these findings establish a new EF-P PTM pathway and also highlight a unique relationship between EF-P modification and polyproline context dependence.IMPORTANCE Despite the high level of conservation of EF-P, the posttranslational modification pathway that activates EF-P is highly divergent between species. Here, we have identified and characterized in B. subtilis a novel posttranslational modification pathway. This pathway not only broadens the scope of potential EF-P modification strategies, but it also indicates that EF-P modifications can be assembled directly on EF-P. Furthermore, characterization of these PTM mutants has established that an altered modification state can impact both the severity of polyproline translational defects and context dependence.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Peptídeos/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Genes Bacterianos , Lisina/metabolismo , Redes e Vias Metabólicas/genética
6.
mBio ; 8(4)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765223

RESUMO

Bacterial elongation factor P (EF-P) plays a pivotal role in the translation of polyproline motifs. To stimulate peptide bond formation, EF-P must enter the ribosome via an empty E-site. Using fluorescence-based single-molecule tracking, Mohapatra et al. (S. Mohapatra, H. Choi, X. Ge, S. Sanyal, and J. C. Weisshaar, mBio 8:e00300-17, 2017, https://doi.org/10.1128/mBio.00300-17) monitored the cellular distribution of EF-P and quantified the frequency of association between EF-P and the ribosome under various conditions. Findings from the study showed that EF-P has a localization pattern that is strikingly similar to that of ribosomes. Intriguingly, EF-P was seen to bind ribosomes more frequently than the estimated number of pausing events, indicating that E-site vacancies occur even when ribosomes are not paused. The study provides new insights into the mechanism of EF-P-dependent peptide bond formation and the intricacies of translation elongation.


Assuntos
Escherichia coli/genética , Fatores de Alongamento de Peptídeos/genética , Biossíntese de Proteínas , Ribossomos
7.
Microb Cell ; 2(10): 360-362, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-28357263

RESUMO

Elongation factor P (EF-P) is an ancient bacterial translational factor that aids the ribosome in polymerizing oligo-prolines. EF-P structurally resembles tRNA and binds in-between the exit and peptidyl sites of the ribosome to accelerate the intrinsically slow reaction of peptidyl-prolyl bond formation. Recent studies have identified in separate organisms, two evolutionarily convergent EF-P post-translational modification systems (EPMS), split predominantly between gammaproteobacteria, and betaproteobacteria. In both cases EF-P receives a post-translational modification, critical for its function, on a highly conserved residue that protrudes into the peptidyl-transfer center of the ribosome. EPMSs are comprised of a gene(s) that synthesizes the precursor molecule used in modifying EF-P, and a gene(s) encoding an enzyme that reacts with the precursor molecule to catalyze covalent attachment to EF-P. However, not all organisms genetically encode a complete EPMS. For instance, some symbiotic bacteria harbor efp and the corresponding gene that enzymatically attaches the modification, but lack the ability to synthesize the substrate used in the modification reaction. Here we highlight the recent discoveries made regarding EPMSs, with a focus on how these incomplete modification pathways shape or have been shaped by the endosymbiont-host relationship.

8.
mBio ; 6(3): e00823, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26060278

RESUMO

UNLABELLED: Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs during translation. In Escherichia coli and Salmonella enterica, the posttranslational ß-lysylation of Lys34 by the PoxA protein is critical for EF-P activity. PoxA is absent from many bacterial species such as Pseudomonas aeruginosa, prompting a search for alternative EF-P posttranslation modification pathways. Structural analyses of P. aeruginosa EF-P revealed the attachment of a single cyclic rhamnose moiety to an Arg residue at a position equivalent to that at which ß-Lys is attached to E. coli EF-P. Analysis of the genomes of organisms that both lack poxA and encode an Arg32-containing EF-P revealed a highly conserved glycosyltransferase (EarP) encoded at a position adjacent to efp. EF-P proteins isolated from P. aeruginosa ΔearP, or from a ΔrmlC::acc1 strain deficient in dTDP-L-rhamnose biosynthesis, were unmodified. In vitro assays confirmed the ability of EarP to use dTDP-L-rhamnose as a substrate for the posttranslational glycosylation of EF-P. The role of rhamnosylated EF-P in translational control was investigated in P. aeruginosa using a Pro4-green fluorescent protein (Pro4GFP) in vivo reporter assay, and the fluorescence was significantly reduced in Δefp, ΔearP, and ΔrmlC::acc1 strains. ΔrmlC::acc1, ΔearP, and Δefp strains also displayed significant increases in their sensitivities to a range of antibiotics, including ertapenem, polymyxin B, cefotaxim, and piperacillin. Taken together, our findings indicate that posttranslational rhamnosylation of EF-P plays a key role in P. aeruginosa gene expression and survival. IMPORTANCE: Infections with pathogenic Salmonella, E. coli, and Pseudomonas isolates can all lead to infectious disease with potentially fatal sequelae. EF-P proteins contribute to the pathogenicity of the causative agents of these and other diseases by controlling the translation of proteins critical for modulating antibiotic resistance, motility, and other traits that play key roles in establishing virulence. In Salmonella spp. and E. coli, the attachment of ß-Lys is required for EF-P activity, but the proteins required for this posttranslational modification pathway are absent from many organisms. Instead, bacteria such as P. aeruginosa activate EF-P by posttranslational modification with rhamnose, revealing a new role for protein glycosylation that may also prove useful as a target for the development of novel antibiotics.


Assuntos
Glicosilação , Fatores de Alongamento de Peptídeos/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Ramnose/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Deleção de Genes , Hexosiltransferases/genética , Hexosiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA