Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phytopathology ; 113(11): 2119-2126, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37069124

RESUMO

Bacterial leaf streak (BLS), caused chiefly by the pathogen Xanthomonas translucens pv. translucens, is becoming an increasingly important foliar disease of barley in the Upper Midwest. The deployment of resistant cultivars is the most economical and practical method of control. To identify sources of BLS resistance, we evaluated two panels of breeding lines from the University of Minnesota (UMN) and Anheuser-Busch InBev (ABI) barley improvement programs for reaction to strain CIX95 in the field at St. Paul and Crookston, MN, in 2020 and 2021. The percentage of resistant lines in the UMN and ABI panels with mid-season maturity was 1.8% (6 of 333 lines) and 5.2% (13 of 251 lines), respectively. Both panels were genotyped with the barley 50K iSelect SNP array, and then a genome-wide association study was performed. A single, highly significant association was identified for BLS resistance on chromosome 6H in the UMN panel. This association was also identified in the ABI panel. Seven other significant associations were detected in the ABI panel: two each on chromosomes 1H, 2H, and 3H and one on chromosome 5H. Of the eight associations identified in the panels, five were novel. The discovery of resistance in elite breeding lines will hasten the time needed to develop and release a BLS-resistant cultivar.


Assuntos
Hordeum , Hordeum/genética , Hordeum/microbiologia , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Mapeamento Cromossômico
2.
Plant Dis ; 107(3): 802-808, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35973078

RESUMO

Bacterial leaf streak (BLS) is a sporadic yet damaging disease of cereals that is growing in importance across the Upper Midwest production region. In barley (Hordeum vulgare ssp. vulgare), this disease is caused primarily by the bacterium Xanthomonas translucens pv. translucens. Accessions resistant to BLS have been reported in past studies, but few have been rigorously validated in the field. To identify accessions carrying diverse resistance alleles to BLS, a largescale germplasm screening study was undertaken against strain CIX95 of X. translucens pv. translucens in St. Paul and Crookston, Minnesota, in 2020 and 2021. The germplasm screened was diverse and included adapted breeding lines from two improvement programs, two landrace panels (one global and one from Ethiopia/Eritrea), introgression lines from wild barley (H. vulgare ssp. spontaneum) in the genetic background of barley cultivar 'Rasmusson', and an assemblage of accessions previously reported to carry BLS resistance. Of the 2,094 accessions evaluated in this study, 32 (1.5%) exhibited a consistently high level of resistance across locations and years and had heading dates similar to standard cultivars grown in the region. Accessions resistant to BLS were identified from all germplasm panels tested, providing genetically diverse sources for barley improvement programs focused on breeding for resistance to this important bacterial disease.


Assuntos
Infecções Bacterianas , Hordeum , Hordeum/genética , Hordeum/microbiologia , Melhoramento Vegetal , Minnesota , Etiópia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA