Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ther Drug Monit ; 41(4): 519-527, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30807539

RESUMO

BACKGROUND: The opioid analgesic fentanyl and its analogues pose a major health concern due to its high potency and the increasing number of overdose deaths worldwide. The analogues of fentanyl may differ in potency, toxicity, and legal status, and it is therefore important to develop analytical methods for their correct identification. This can be challenging since many fentanyl analogues are structural isomers. Two fentanyl isomers that have been in the spotlight lately due to difficulties regarding separation and identification are cyclopropylfentanyl and crotonylfentanyl, which have been reported to display nearly identical fragmentation patterns and chromatographic behavior. METHODS: Chromatographic separation of cyclopropylfentanyl and crotonylfentanyl by ultra-high-performance liquid chromatography was investigated using 3 different stationary phases (high strength silica T3, ethylsiloxane/silica hybrid C18, and Kinetex biphenyl) using gradient elution with a mobile phase consisting of 10 mM ammonium formate pH 3.1 and MeOH. Detection was performed by tandem mass spectrometry. In addition, the major metabolites of the 2 compounds formed on incubation with human liver microsomes were identified by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis. RESULTS: Baseline separation of cyclopropylfentanyl and crotonylfentanyl was achieved on the ethylsiloxane/silica hybrid C18 column with retention times of 6.79 and 7.35 minutes, respectively. The major metabolites of the 2 analogues formed by human liver microsomes differed, with the main biotransformation being N-dealkylation and carboxylation for cyclopropylfentanyl and crotonylfentanyl, respectively. We demonstrated the usefulness of the 2 approaches by unambiguously identifying cyclopropylfentanyl, as well as its metabolites, in 2 authentic postmortem blood samples. CONCLUSIONS: In this study, we successfully demonstrated that cyclopropylfentanyl and crotonylfentanyl can be distinguished by methods commonly available in forensic laboratories.


Assuntos
Analgésicos Opioides/metabolismo , Fentanila/análogos & derivados , Cromatografia Líquida de Alta Pressão/métodos , Fentanila/metabolismo , Humanos , Laboratórios , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem/métodos
2.
J Pharmacol Exp Ther ; 367(3): 543-550, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30266766

RESUMO

Novel synthetic cannabinoids are appearing in recreational drug markets worldwide. Pharmacological characterization of these new drugs is needed to inform clinicians, toxicologists, and policy makers who monitor public health. [1-(5-Fluoropentyl)-1H-indol-3-yl](1-naphthyl)methanone (AM-2201) is an abused synthetic cannabinoid that was initially created as a research tool for investigating the endocannabinoid system. Here we measured the pharmacodynamic effects of AM-2201 in rats, and simultaneously determined plasma pharmacokinetics for the parent drug and its metabolites. Male Sprague-Dawley rats were fitted with surgically implanted temperature transponders and indwelling jugular catheters under pentobarbital anesthesia. One week later, rats received subcutaneous injection of AM-2201 (0.1, 0.3, and 1.0 mg/kg) or its vehicle, and serial blood specimens were withdrawn via catheters. Core temperatures and catalepsy were measured just prior to each blood withdrawal, and plasma was assayed for drug and metabolites using liquid chromatography-tandem mass spectrometry. We found that AM-2201 produced dose-related hypothermia and catalepsy that peaked at 2 hours and lasted up to 8 hours. AM-2201 plasma concentrations rose linearly with increasing dose and ranged from 0.14 to 67.9 µg/l. Concentrations of three metabolites, AM-2201 N-(4-hydroxypentyl) (≤0.17 µg/l), naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) N-(5-hydroxypentyl) (≤1.14 µg/l), and JWH-018 N-pentanoic acid (≤0.88 µg/l) were detectable but much lower. Peak AM-2201, JWH-018 N-(5-hydroxypentyl), and JWH-018 N-pentanoic acid concentrations occurred at 1.3, 2.4, and 6.5 hours, respectively. Concentrations of AM-2201, JWH-018 N-(5-hydroxypentyl), and JWH-018 N-pentanoic acid were negatively correlated with body temperature, but, given the low concentrations of metabolites detected, AM-2201 is likely the major contributor to pharmacodynamic effects under our experimental conditions.


Assuntos
Canabinoides/farmacologia , Canabinoides/farmacocinética , Indóis/farmacologia , Indóis/farmacocinética , Animais , Cromatografia Líquida/métodos , Drogas Ilícitas/farmacocinética , Drogas Ilícitas/farmacologia , Indóis/metabolismo , Masculino , Naftalenos/metabolismo , Ácidos Pentanoicos/metabolismo , Ratos , Ratos Sprague-Dawley , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Espectrometria de Massas em Tandem/métodos
3.
Handb Exp Pharmacol ; 252: 495-541, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105471

RESUMO

This chapter describes how new psychoactive substances (NPS) have been involved in fatal intoxications from 2010 and onwards. It summarizes the circumstances, antemortem symptoms, and adverse effects that have led to death after ingestion of one or more NPS and tabulates concentrations, and postmortem findings from these intoxications.Consumption of NPS exerts health problems and unknown risks for the users. Data on toxicity of many NPS are scarce or nonexistent and long-term toxicity and risks are still largely unknown. In addition, purity and composition of products containing NPS are often inconsistent or not known, which places users at high risk as evidenced by hospital emergency admissions and deaths.The most serious threat to drug users are the synthetic opioids that with strong central nervous depressant effects have caused numerous accidental deaths spread over the entire globe. The synthetic cannabinoids seem to be the most unpredictable with no clear toxidrome and unknown or poorly understood mechanisms of toxicity, but with adverse effects pointing toward the cardiovascular system. The toxidromes commonly encountered after ingestion of cathinones and phenethylamines are of sympathomimetic and hallucinogenic character, which includes risk of developing a serotonin syndrome, excited delirium, and life-threatening cardiovascular effects. In comparison to their conventional "parent" drug, i.e., heroin, cannabis, and amphetamine, most NPS appear to exhibit more severe adverse effects. The deaths attributed to NPS have dramatically increased in the last years. In our opinion, this is because of the shift from synthetic cannabinoids and cathinones to the even more toxic and dangerously potent fentanyl analogues.


Assuntos
Analgésicos Opioides/intoxicação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/mortalidade , Psicotrópicos/intoxicação , Usuários de Drogas , Hospitalização , Humanos
4.
Clin Chem ; 62(1): 157-69, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26430074

RESUMO

BACKGROUND: Despite increasing prevalence of novel psychoactive substances, no human metabolism data are currently available, complicating laboratory documentation of intake in urine samples and assessment of the drugs' pharmacodynamic, pharmacokinetic, and toxicological properties. In 2014, THJ-018 and THJ-2201, synthetic cannabinoid indazole analogs of JWH-018 and AM-2201, were identified, with the National Forensic Laboratory Information System containing 220 THJ-2201 reports. Because of numerous adverse events, the Drug Enforcement Administration listed THJ-2201 as Schedule I in January 2015. METHODS: We used high-resolution mass spectrometry (HR-MS) (TripleTOF 5600(+)) to identify optimal metabolite markers after incubating 10 µmol/L THJ-018 and THJ-2201 in human hepatocytes for 3 h. Data were acquired via full scan and information-dependent acquisition triggered product ion scans with mass defect filter. In silico metabolite predictions were performed with MetaSite and compared with metabolites identified in human hepatocytes. RESULTS: Thirteen THJ-018 metabolites were detected, with the major metabolic pathways being hydroxylation on the N-pentyl chain and further oxidation or glucuronidation. For THJ-2201, 27 metabolites were observed, predominantly oxidative defluorination plus subsequent carboxylation or glucuronidation, and glucuronidation of hydroxylated metabolites. Dihydrodiol formation on the naphthalene moiety was observed for both compounds. MetaSite prediction matched well with THJ-018 hepatocyte metabolites but underestimated THJ-2201 oxidative defluorination. CONCLUSIONS: With HR-MS for data acquisition and processing, we characterized THJ-018 and THJ-2201 metabolism in human hepatocytes and suggest appropriate markers for laboratories to identify THJ-018 and THJ-2201 intake and link observed adverse events to these new synthetic cannabinoids.


Assuntos
Canabinoides/análise , Canabinoides/metabolismo , Hepatócitos/metabolismo , Espectrometria de Massas , Canabinoides/síntese química , Canabinoides/química , Humanos , Estrutura Molecular
5.
Rapid Commun Mass Spectrom ; 30(8): 1067-78, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27003044

RESUMO

RATIONALE: AMB (methyl (1-pentyl-1H-indazole-3-carbonyl)-L-valinate)) and its fluoro analog 5F-AMB (methyl (1-(5-fluoropentyl)-1H-indazole-3-carbonyl)-L-valinate) are two new synthetic cannabinoids that are structural analogs of AB-PINACA and 5F-AB-PINACA, respectively. 5F-AMB is scheduled as an illicit drug in China, Germany, Singapore and Japan, and no metabolism data are currently available for either drug. The aim of the present work was to investigate the metabolism of AMB and 5F-AMB and propose appropriate markers to identify their intake in clinical or forensic cases. METHODS: AMB and 5F-AMB were incubated in human hepatocytes (10 µmol/L) to generate phase I and II metabolites, which were identified with a TripleTOF 5600(+) high-resolution mass spectrometer. AMB and 5F-AMB metabolic stability studies also were performed with human liver microsomes (HLM) to evaluate metabolic clearances, and to adequately design the human hepatocyte experiment. RESULTS: AMB and 5F-AMB were quickly metabolized in HLM with a 1.1 ± 0.1 and 1.0 ± 0.2 min T1/2, respectively. The predominant metabolic pathway for AMB and 5F-AMB in hepatocytes was ester hydrolysis, and further oxidation and/or glucuronidation. In total, 19 metabolites were identified for AMB and 17 for 5F-AMB. We describe metabolites to differentiate AMB from 5F-AMB, and metabolites that are common to both analytes due to oxidative defluorination of 5F-AMB. CONCLUSIONS: For the first time, AMB and 5F-AMB metabolism profiles were characterized, providing valuable data for identifying these two novel psychoactive substances. The difficulties of differentiating AMB and 5F-AMB from AB-PINACA/5F-AB-PINACA metabolites also were examined. These data improve the interpretation of urinary markers after AMB and 5F-AMB intake. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Canabinoides/análise , Canabinoides/metabolismo , Hepatócitos/metabolismo , Espectrometria de Massas/métodos , Metabolômica/métodos , Microssomos Hepáticos/metabolismo , Canabinoides/química , Células Cultivadas , Humanos
6.
Anal Bioanal Chem ; 408(18): 4845-56, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27185540

RESUMO

Novel psychoactive substances (NPS) are ever changing on the drug market, making it difficult for toxicology laboratory methods to stay current with so many new drugs. Recently, PV8, a synthetic pyrrolidinophenone, was detected in seized products in Japan (2013), The Netherlands (2014), and Germany (2014). There are no controlled PV8 administration studies, and no pharmacodynamic and pharmacokinetic data. The objective was to determine PV8's metabolic stability in human liver microsome (HLM) incubation and its metabolism following human hepatocyte incubation and high-resolution mass spectrometry (HRMS) with a Thermo Scientific Q-Exactive. Data were acquired with a full-scan data-dependent mass spectrometry method. Scans were thoroughly data mined with different data processing algorithms and analyzed in WebMetaBase. PV8 exhibited a relatively short 28.8 min half-life, with an intrinsic 24.2 µL/min/mg microsomal clearance. This compound is predicted to be an intermediate clearance drug with an estimated human 22.7 mL/min/kg hepatic clearance. Metabolic pathways identified in vitro included: hydroxylation, ketone reduction, carboxylation, N-dealkylation, iminium formation, dehydrogenation, N-oxidation, and carbonylation. The top three in vitro metabolic pathways were di-hydroxylation > ketone reduction > γ-lactam formation. Authentic urine specimen analyses revealed the top three metabolic pathways were aliphatic hydroxylation > ketone reduction + aliphatic hydroxylation > aliphatic carboxylation, although the most prominent peak was parent PV8. These data provide useful urinary metabolite targets (aliphatic hydroxylation, aliphatic hydroxylation + ketone reduction, aliphatic carboxylation, and di-hydroxylation) for forensic and clinical testing, and focus reference standard companies' synthetic efforts to provide commercially available standards needed for PV8 biological specimen testing. Graphical Abstract Top four PV8 metabolites identified in vitro. Biotransformations highlighted in blue. Markush structures presented when exact location of biotransformation is unknown.


Assuntos
Alcaloides/análise , Alcaloides/metabolismo , Perfilação da Expressão Gênica/métodos , Hepatócitos/metabolismo , Espectrometria de Massas/métodos , Psicotrópicos/metabolismo , Detecção do Abuso de Substâncias/métodos , Células Cultivadas , Humanos , Metaboloma/fisiologia , Psicotrópicos/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Urinálise/métodos
7.
Drug Metab Rev ; 47(2): 124-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25853390

RESUMO

Synthetic cannabinoids (SC), originally developed as research tools, are now highly abused novel psychoactive substances. We present a comprehensive systematic review covering in vivo and in vitro animal and human pharmacokinetics and analytical methods for identifying SC and their metabolites in biological matrices. Of two main phases of SC research, the first investigated therapeutic applications, and the second abuse-related issues. Administration studies showed high lipophilicity and distribution into brain and fat tissue. Metabolite profiling studies, mostly with human liver microsomes and human hepatocytes, structurally elucidated metabolites and identified suitable SC markers. In general, SC underwent hydroxylation at various molecular sites, defluorination of fluorinated analogs and phase II metabolites were almost exclusively glucuronides. Analytical methods are critical for documenting intake, with different strategies applied to adequately address the continuous emergence of new compounds. Immunoassays have different cross-reactivities for different SC classes, but cannot keep pace with changing analyte targets. Gas chromatography and liquid chromatography mass spectrometry assays - first for a few, then numerous analytes - are available but constrained by reference standard availability, and must be continuously updated and revalidated. In blood and oral fluid, parent compounds are frequently present, albeit in low concentrations; for urinary detection, metabolites must be identified and interpretation is complex due to shared metabolic pathways. A new approach is non-targeted HRMS screening that is more flexible and permits retrospective data analysis. We suggest that streamlined assessment of new SC's pharmacokinetics and advanced HRMS screening provide a promising strategy to maintain relevant assays.


Assuntos
Canabinoides/análise , Canabinoides/farmacocinética , Drogas Ilícitas/análise , Drogas Ilícitas/farmacocinética , Detecção do Abuso de Substâncias/métodos , Animais , Biotransformação , Encéfalo/metabolismo , Canabinoides/química , Cromatografia Líquida/métodos , Humanos , Drogas Ilícitas/química , Fígado/metabolismo , Espectrometria de Massas/métodos , Estrutura Molecular , Especificidade de Órgãos , Detecção do Abuso de Substâncias/instrumentação , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual
8.
Clin Chem Lab Med ; 53(3): 423-34, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25263309

RESUMO

BACKGROUND: Identifying synthetic cannabinoid designer drug abuse challenges toxicologists and drug testing programs. The best analytical approach for reliably documenting intake of emerging synthetic cannabinoids is unknown. Primarily metabolites are found in urine, but optimal metabolite targets remain unknown, and definitive identification is complicated by converging metabolic pathways. METHODS: We screened 20,017 US military urine specimens collected from service members worldwide for synthetic cannabinoids between July 2011 and June 2012. We confirmed 1432 presumptive positive and 1069 presumptive negative specimens by qualitative liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis including 29 biomarkers for JWH-018, JWH-073, JWH-081, JWH-122, JWH-200, JWH-210, JWH-250, RCS-4, AM2201 and MAM2201. Specimen preparation included enzyme hydrolysis and acetonitrile precipitation prior to LC-MS/MS analysis. We evaluated individual synthetic cannabinoid metabolite detection rates, prevalence, temporal patterns and suitable targets for analytical procedures. RESULTS: Prevalence was 1.4% with 290 confirmed positive specimens, 92% JWH-018, 54% AM2201 and 39% JWH-122 metabolites. JWH-073, JWH-210 and JWH-250 also were identified in 37%, 4% and 8% of specimens, respectively. The United States Army Criminal Investigation Command seizure pattern for synthetic cannabinoid compounds matched our urine specimen results over the time frame of the study. Apart from one exception (AM2201), no parent compounds were observed. CONCLUSIONS: Hydroxyalkyl metabolites accounted for most confirmed positive tests, and in many cases, two metabolites were identified, increasing confidence in the results, and improving detection rates. These data also emphasize the need for new designer drug metabolism studies to provide relevant targets for synthetic cannabinoid identification.


Assuntos
Canabinoides/metabolismo , Canabinoides/urina , Militares , Detecção do Abuso de Substâncias/métodos , Detecção do Abuso de Substâncias/estatística & dados numéricos , Canabinoides/administração & dosagem , Cromatografia Líquida , Humanos , Imunoensaio , Estrutura Molecular , Espectrometria de Massas em Tandem , Fatores de Tempo , Estados Unidos/epidemiologia
9.
Anal Bioanal Chem ; 406(6): 1763-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24518903

RESUMO

BACKGROUND: PB-22 (1-pentyl-8-quinolinyl ester-1H-indole-3-carboxylic acid) and 5F-PB-22 (1-(5-fluoropentyl)-8-quinolinyl ester-1H-indole-3-carboxylic acid) are new synthetic cannabinoids with a quinoline substructure and the first marketed substances with an ester bond linkage. No human metabolism data are currently available, making it difficult to document PB-22 and 5F-PB-22 intake from urine analysis, and complicating assessment of the drugs' pharmacodynamic and toxicological properties. METHODS: We incubated 10 µmol/l PB-22 and 5F-PB-22 with pooled cryopreserved human hepatocytes up to 3 h and analyzed samples on a TripleTOF 5600+ high-resolution mass spectrometer. Data were acquired via TOF scan, followed by information-dependent acquisition triggered product ion scans with mass defect filtering (MDF). The accurate mass full scan MS and MS/MS metabolite datasets were analyzed with multiple data processing techniques, including MDF, neutral loss and product ion filtering. RESULTS: The predominant metabolic pathway for PB-22 and 5F-PB-22 was ester hydrolysis yielding a wide variety of (5-fluoro)pentylindole-3-carboxylic acid metabolites. Twenty metabolites for PB-22 and 22 metabolites for 5F-PB-22 were identified, with the majority generated by oxidation with or without glucuronidation. For 5F-PB-22, oxidative defluorination occurred forming PB-22 metabolites. Both compounds underwent epoxide formation followed by internal hydrolysis and also produced a cysteine conjugate. CONCLUSION: Human hepatic metabolic profiles were generated for PB-22 and 5F-PB-22. Pentylindole-3-carboxylic acid, hydroxypentyl-PB-22 and PB-22 pentanoic acid for PB-22, and 5'-fluoropentylindole-3-carboxylic acid, PB-22 pentanoic acid and the hydroxy-5F-PB-22 metabolite with oxidation at the quinoline system for 5F-PB-22 are likely the best targets to incorporate into analytical methods for urine to document PB-22 and 5F-PB-22 intake.


Assuntos
Canabinoides/metabolismo , Hepatócitos/metabolismo , Canabinoides/química , Células Cultivadas , Humanos , Hidrólise , Indóis/química , Indóis/metabolismo , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
10.
Anal Chem ; 85(7): 3730-8, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23458260

RESUMO

INTRODUCTION: Synthetic cannabinoids are an emerging illicit drug class. The variety of available substances is large and ever-changing, making it difficult for laboratories to remain current. We present a qualitative LC-MS/MS method identifying urinary metabolites of JWH-018, JWH-073, JWH-081, JWH-122, JWH-200, JWH-210, JWH-250, RCS-4, and AM2201 and the parent compounds JWH-018, JWH-073, JWH-081, JWH-122, JWH-210, JWH-250, RCS-4, AM2201, and MAM2201. METHODS: After enzymatic hydrolysis, urinary proteins were precipitated with acetonitrile. Chromatography utilized a 10 min gradient on a Kinetex XB-C18 column with 0.1% formic acid in water and acetonitrile. Scheduled multiple reaction monitoring "survey scans" were followed by information-dependent acquisition-enhanced product ion scan experiments on an ABSciex 5500 QTRAP mass spectrometer. Analytes were identified by software-assisted library searching against reference spectra. RESULTS: The method was fully validated, including proof of selectivity (no exogenous or endogenous interferences were observed), assessment of matrix effects (95-122%) and recovery (53-95%), determination of limits of detection (0.5-10 ng/mL), carry-over studies (thresholds between 100 and 1000 ng/mL), and determination of autosampler stability (samples were stable for at least 3 days). Hydrolysis efficiency was thoroughly investigated for a wide range of glucuronides and for the reference standard, JWH-018 5-hydroxypentyl glucuronide.


Assuntos
Canabinoides/metabolismo , Canabinoides/urina , Drogas Ilícitas/metabolismo , Drogas Ilícitas/urina , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Humanos , Limite de Detecção
11.
Clin Chem ; 59(11): 1638-48, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014837

RESUMO

BACKGROUND: Since the mid-2000s synthetic cannabinoids have been abused as recreational drugs, prompting scheduling of these substances in many countries. To circumvent legislation, manufacturers constantly market new compounds; [1-(5-fluoropentyl)indol-3-yl]-(2,2,3,3-tetramethylcyclopropyl)methanone (XLR-11), the fluorinated UR-144 analog, is one of the most recent and widely abused drugs, and its use is now linked with acute kidney injury. Our goal was to investigate XLR-11 metabolism for identification of major urinary targets in analytical methods and to clarify the origin of metabolites when one or more parent synthetic cannabinoids can be the source. METHODS: We incubated 10 µmol/L XLR-11 with pooled human hepatocytes and sampled after 1 and 3 h. Samples were analyzed by high-resolution mass spectrometry with a TOF scan followed by information-dependent acquisition triggered product ion scans with dynamic background subtraction and mass defect filters. Scans were thoroughly data mined with different data processing algorithms (Metabolite Pilot 1.5). RESULTS: XLR-11 underwent phase I and II metabolism, producing more than 25 metabolites resulting from hydroxylation, carboxylation, hemiketal and hemiacetal formation, internal dehydration, and further glucuronidation of some oxidative metabolites. No sulfate or glutathione conjugation was observed. XLR-11 also was defluorinated, forming UR-144 metabolites. On the basis of mass spectrometry peak areas, we determined that the major metabolites were 2'-carboxy-XLR-11, UR-144 pentanoic acid, 5-hydroxy-UR-144, hydroxy-XLR-11 glucuronides, and 2'-carboxy-UR-144 pentanoic acid. Minor metabolites were combinations of the biotransformations mentioned above, often glucuronidated. CONCLUSIONS: These are the first data defining major urinary targets of XLR-11 metabolism that could document XLR-11 intake in forensic and clinical investigations.


Assuntos
Canabinoides/metabolismo , Drogas Desenhadas/metabolismo , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Espectrometria de Massas/métodos
12.
Anal Bioanal Chem ; 405(12): 3929-35, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23064708

RESUMO

In the age of the Internet, the variety of drugs offered online is constantly increasing, and new drugs emerge every month. One group of drugs showing such an enormous increase is that of synthetic cannabinoids. Since their first identification in 'herbal mixtures', new structural modifications continue to appear on the market. In order to keep up with this process, toxicological screening methods need to be up to date. This can become extremely difficult if no reference material is available. In this article, a fast and effective way to extract and purify synthetic cannabinoids from 'herbal mixtures' is presented. This method opens a new opportunity for a timely reaction by obtaining reference material straight out of the 'herbal mixtures' ordered via the Internet. Isolation was carried out on a flash chromatography system with gradient elution on a C18 column using methanol and 0.55 % formic acid as mobile phases. The obtained purity of all compounds exceeded 99 %. In addition to the isolation of single compounds, the method proved to be suitable for the separation of various synthetic cannabinoids in one mixture, including the diastereomers cis- and trans-CP-47,497-C8. This approach for obtaining pure standards of new drugs proved to be effective, inexpensive and much quicker than waiting for the substances to be commercially available as reference material.


Assuntos
Canabinoides/isolamento & purificação , Cromatografia/métodos , Cicloexanóis/isolamento & purificação , Drogas Desenhadas/química , Preparações de Plantas/química , Cromatografia/economia , Cromatografia/normas , Padrões de Referência
13.
Anal Bioanal Chem ; 400(3): 737-46, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21394453

RESUMO

An LC-MS/MS method for the determination of the atypic neuroleptic clozapine and its two main metabolites norclozapine and clozapine-N-oxide has been developed and validated for serum and urine. After addition of d4-clozapine as deuterated internal standard a fast single-step liquid-liquid extraction under alkaline conditions and with ethyl acetate as organic solvent followed. The analytes were chromatographically separated on a Synergi Polar RP column using gradient elution with 1 mM ammonium formate and methanol. Data acquisition was performed on a QTrap 2000 tandem mass spectrometer in multiple reaction monitoring mode with positive electrospray ionization. Two transitions were monitored for each analyte in order to fulfill the established identification criteria. The validation included the determination of the limits of quantification (1.0 ng/mL for all analytes in serum and 2.0 ng/mL for all analytes in urine), assessment of matrix effects (77% to 92% in serum, 21 to 78% in urine) and the determination of extraction efficiencies (52% to 85% for serum, 59% to 88% for urine) and accuracy data. Imprecision was <10%, only the quantification of norclozapine in urine yielded higher relative standard deviations (11.2% and 15.7%). Bias values were below ±10%. Dilution of samples had no impact on the correctness for clozapine and norclozapine in both matrices and for clozapine-N-oxide in serum. For quantification of clozapine-N-oxide in urine a calibration with diluted calibrators has to be used. Calibration curves were measured from the LOQ up to 2,000 ng/mL and proved to be linear over the whole range with regression coefficients higher than 0.98. The method was finally applied to several clinical serum and urine samples and a cerebro-spinal fluid sample of an intoxicated 13-month-old girl.


Assuntos
Antipsicóticos/sangue , Antipsicóticos/urina , Clozapina/sangue , Clozapina/urina , Espectrometria de Massas em Tandem/métodos , Antipsicóticos/metabolismo , Cromatografia Líquida/economia , Cromatografia Líquida/métodos , Clozapina/análogos & derivados , Clozapina/metabolismo , Humanos , Limite de Detecção , Espectrometria de Massas em Tandem/economia
14.
Anal Bioanal Chem ; 396(7): 2403-14, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20069283

RESUMO

Since the late 1990s and early 2000s, derivatives of well-known designer drugs as well as new psychoactive compounds have been sold on the illicit drug market and have led to intoxications and fatalities. The LC-MS/MS screening method presented covers 31 new designer drugs as well as cathinone, methcathinone, phencyclidine, and ketamine which were included to complete the screening spectrum. All but the last two are modified molecular structures of amphetamine, tryptamine, or piperazine. Among the amphetamine derivatives are cathinone, methcathinone, 3,4-DMA, 2,5-DMA, DOB, DOET, DOM, ethylamphetamine, MDDMA, 4-MTA, PMA, PMMA, 3,4,5-TMA, TMA-6 and members of the 2C group: 2C-B, 2C-D, 2C-H, 2C-I, 2C-P, 2C-T-2, 2C-T-4, and 2C-T-7. AMT, DPT, DiPT, MiPT, DMT, and 5MeO-DMT are contained in the tryptamine group, BZP, MDBP, TFMPP, mCPP, and MeOPP in the piperazine group. Using an Applied Biosystems LC-MS/MS API 365 TurboIonSpray it is possible to identify all 35 substances. After addition of internal standards and mixed-mode solid-phase extraction the analytes are separated using a Synergi Polar RP column and gradient elution with 1 mM ammonium formate and methanol/0.1% formic acid as mobile phases A and B. Data acquisition is performed in MRM mode with positive electro spray ionization. The assay is selective for all tested substances. Limits of detection were determined by analyzing S/N-ratios and are between 1.0 and 5.0 ng/mL. Matrix effects lie between 65% and 118%, extraction efficiencies range from 72% to 90%.


Assuntos
Anfetaminas/sangue , Cromatografia Líquida/métodos , Drogas Desenhadas/análise , Avaliação Pré-Clínica de Medicamentos/métodos , Espectrometria de Massas/métodos , Piperazinas/sangue , Triptaminas/sangue , Análise Química do Sangue/métodos , Misturas Complexas/sangue , Humanos , Drogas Ilícitas/sangue , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
J Anal Toxicol ; 43(8): 607-614, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31504610

RESUMO

Cyclopropylfentanyl is a fentanyl analog implicated in 78 deaths in Europe and over 100 deaths in the United States, but toxicological information including metabolism data about this drug is scarce. The aim of this study was to provide the exact structure of abundant and unique metabolites of cyclopropylfentanyl along with synthesis routes. In this study, metabolites were identified in 13 post-mortem urine samples using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Samples were analyzed with and without enzymatic hydrolysis, and seven potential metabolites were synthesized in-house to provide the identity of major metabolites. Cyclopropylfentanyl was detected in all samples, and the most abundant metabolite was norcyclopropylfentanyl (M1) that was detected in 12 out of 13 samples. Reference materials were synthesized (synthesis routes provided) to identify the exact structure of the major metabolites 4-hydroxyphenethyl cyclopropylfentanyl (M8), 3,4-dihydroxyphenethyl cyclopropylfentanyl (M5) and 4-hydroxy-3-methoxyphenethyl cyclopropylfentanyl (M9). These metabolites are suitable urinary markers of cyclopropylfentanyl intake as they are unique and detected in a majority of hydrolyzed urine samples. Minor metabolites included two quinone metabolites (M6 and M7), not previously reported for fentanyl analogs. Interestingly, with the exception of norcyclopropylfentanyl (M1), the metabolites appeared to be between 40% and 90% conjugated in urine. In total, 11 metabolites of cyclopropylfentanyl were identified, including most metabolites previously reported after hepatocyte incubation.


Assuntos
Analgésicos Opioides/urina , Fentanila/análogos & derivados , Toxicologia Forense/métodos , Detecção do Abuso de Substâncias/métodos , Analgésicos Opioides/metabolismo , Biomarcadores/urina , Cromatografia Líquida , Fentanila/metabolismo , Fentanila/urina , Toxicologia Forense/instrumentação , Toxicologia Forense/normas , Hepatócitos/metabolismo , Humanos , Espectrometria de Massas , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Padrões de Referência , Detecção do Abuso de Substâncias/instrumentação , Detecção do Abuso de Substâncias/normas
16.
Drug Test Anal ; 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29577658

RESUMO

To further elucidate the metabolism of CUMYL-4CN-BINACA, a new synthetic cannabinoid with a cyano group, and to evaluate biomarkers, we incubated the substance in human hepatocytes and analysed 9 authentic urine specimens. We also quantified CUMYL-4CN-BINACA and cyanide in blood and provide comprehensive data on the 7 autopsy cases, 5 of them determined CUMYL-4CN-BINACA intoxications. For metabolite elucidation, CUMYL-4CN-BINACA was incubated with pooled human hepatocytes for up to 5 hours, urine samples were analysed with and without enzymatic hydrolysis. Data was acquired in data-dependent mode by ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) with an Agilent 6550 QTOF. For quantitative analysis of CUMYL-4CN-BINACA, blood samples were precipitated and analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cyanide was determined by gas chromatography-headspace-nitrogen phosphorus detection (GC-headspace-NPD). CUMYL-4CN-BINACA was metabolised via CYP450-mediated hydroxylation at 4-butyl position generating a cyanohydrin (M12), which releases free cyanide to form an aldehyde intermediate and eventually generates 4-hydroxybutyl CUMYL-BINACA (M11) and CUMYL-BINACA butanoic acid (M10). Other minor metabolites were produced by hydroxylation, dihydroxylation, N-dealkylation, and dihydrodiol formation; glucuronidation was observed. One urine sample showed high intensities of M10 and a wide variety of metabolites; the other samples contained fewer metabolites in low abundance and 1 sample showed no metabolites. CUMYL-4CN-BINACA blood concentrations ranged from 0.1 to 8.3 ng/g showing an overlap between fatal and non-fatal concentrations. One blood sample contained 0.36 µg/g cyanide. Release of free cyanide during metabolism is worrying as it might induce liver toxicity. As suggested earlier, CUMYL-BINACA butanoic acid is the most abundant biomarker in urine, but monitoring of additional metabolites or, even better, analysis for the parent in blood is recommended.

17.
Curr Neuropharmacol ; 15(5): 682-691, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29403341

RESUMO

Metabolite profiling of novel psychoactive substances (NPS) is critical for documenting drug consumption. N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (ADB-FUBINACA) is an emerging synthetic cannabinoid whose toxicological and metabolic data are currently unavailable. We aimed to determine optimal markers for identifying ADB-FUBINACA intake. Metabolic stability was evaluated with human liver microsome incubations. Metabolites were identified after 1 and 3 h incubation with pooled human hepatocytes, liquid chromatography- high resolution mass spectrometry in positive-ion mode (5600+ TripleTOF®, Sciex) and several data mining approaches (MetabolitePilot™, Sciex). Metabolite separation was achieved on an Ultra Biphenyl column (Restek®); full-scan TOF-MS and information-dependent acquisition MS/MS data were acquired. ADB-FUBINACA microsomal half-life was 39.7 min, with a predicted hepatic clearance of 9.0 mL/min/kg and a 0.5 extraction ratio (intermediate-clearance drug). Twenty-three metabolites were identified. Major metabolic pathways were alkyl and indazole hydroxylation, terminal amide hydrolysis, subsequent glucuronide conjugations, and dehydrogenation. We recommend ADB-FUBINACA hydroxyalkyl, hydroxydehydroalkyl and hydroxylindazole metabolites as ADB-FUBINACA intake markers. N-dealkylated metabolites are not specific ADB-FUBINACA metabolites and should not be used as definitive markers of consumption. This is the first ADB-FUBINACA in vitro metabolism study; in vivo experiments enabling pharmacokinetic and pharmacodynamics studies or urine from authentic clinical/forensic cases are needed to confirm our results.


Assuntos
Indazóis/farmacocinética , Microssomos Hepáticos/metabolismo , Psicotrópicos/farmacocinética , Biomarcadores/metabolismo , Humanos , Técnicas In Vitro , Indazóis/metabolismo , Metaboloma , Psicotrópicos/metabolismo
18.
AAPS J ; 19(4): 1102-1122, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28382544

RESUMO

New fentanyl analogs have recently emerged as new psychoactive substances and have caused numerous fatalities worldwide. To determine if the new analogs follow the same metabolic pathways elucidated for fentanyl and known fentanyl analogs, we performed in vitro and in vivo metabolite identification studies for acetylfentanyl, acrylfentanyl, 4-fluoro-isobutyrylfentanyl, and furanylfentanyl. All compounds were incubated at 10 µM with pooled human hepatocytes for up to 5 h. For each compound, four or five authentic human urine samples from autopsy cases with and without enzymatic hydrolysis were analyzed. Data acquisition was performed in data-dependent acquisition mode during liquid chromatography high-resolution mass spectrometry analyses. Data was analyzed (1) manually based on predicted biotransformations and (2) with MetaSense software using data-driven search algorithms. Acetylfentanyl, acrylfentanyl, and 4-fluoro-isobutyrylfentanyl were predominantly metabolized by N-dealkylation, cleaving off the phenethyl moiety, monohydroxylation at the ethyl linker and piperidine ring, as well as hydroxylation/methoxylation at the phenyl ring. In contrast, furanylfentanyl's major metabolites were generated by amide hydrolysis and dihydrodiol formation, while the nor-metabolite was minor or not detected in case samples at all. In general, in vitro results matched the in vivo findings well, showing identical biotransformations in each system. Phase II conjugation was observed, particularly for acetylfentanyl. Based on our results, we suggest the following specific and abundant metabolites as analytical targets in urine: a hydroxymethoxy and monohydroxylated metabolite for acetylfentanyl, a monohydroxy and dihydroxy metabolite for acrylfentanyl, two monohydroxy metabolites and a hydroxymethoxy metabolite for 4-fluoro-isobutyrylfentanyl, and a dihydrodiol metabolite and the amide hydrolysis metabolite for furanylfentanyl.


Assuntos
Fentanila/análogos & derivados , Algoritmos , Biotransformação , Células Cultivadas , Fentanila/metabolismo , Fentanila/farmacocinética , Humanos , Hidrólise , Hidroxilação , Técnicas In Vitro , Software
19.
AAPS J ; 19(3): 736-742, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28091881

RESUMO

Meclonazepam is a benzodiazepine patented in 1977 to treat parasitic worms, which recently appeared as a designer benzodiazepine and drug of abuse. The aim of this study was to identify metabolites suitable as biomarkers of drug intake in urine using high-resolution mass spectrometry, authentic urine samples, and different model systems including human liver microsomes, cryopreserved hepatocytes, and a mice model. The main metabolites of meclonazepam found in human urine were amino-meclonazepam and acetamido-meclonazepam; also, minor peaks for meclonazepam were observed in three of four urine samples. These observations are consistent with meclonazepam having a metabolism similar to that of other nitro containing benzodiazepines such as clonazepam, flunitrazepam, and nitrazepam. Both metabolites were produced by the hepatocytes and in the mice model, but the human liver microsomes were only capable of producing minor amounts of the amino metabolite. However, under nitrogen, the amount of amino-meclonazepam produced increased 140 times. This study comprehensively elucidated meclonazepam metabolism and also illustrates that careful selection of in vitro model systems for drug metabolism is needed, always taking into account the expected metabolism of the tested drug.


Assuntos
Benzodiazepinonas/urina , Esquistossomicidas/urina , Animais , Hepatócitos/metabolismo , Humanos , Drogas Ilícitas/urina , Masculino , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo
20.
Forensic Sci Int ; 274: 55-63, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27863836

RESUMO

Flubromazolam is a triazolam benzodiazepine that recently emerged as a new psychoactive substance. Since metabolism data are scarce and good analytical targets besides the parent are unknown, we investigated flubromazolam metabolism in vitro and in vivo. 10µmol/L flubromazolam was incubated with human liver microsomes for 1h and with cryopreserved human hepatocytes for 5h. Mice were administered 0.5 or 1.0mg flubromazolam/kg body weight intraperitoneally, urine was collected for 24h. All samples, together with six authentic forensic human case specimens, were analyzed (with or without hydrolysis, in case it was urine) by UHPLC-HRMS on an Acquity HSS T3 column with an Agilent 6550 QTOF. Data mining was performed manually and with MassMetasite software (Molecular Discovery). A total of nine metabolites were found, all generated by hydroxylation and/or glucuronidation. Besides O-glucuronidation, flubromazolam formed an N+-glucuronide. Flubromazolam was not metabolized extensively in vitro, as only two monohydroxy metabolites were detected in low intensity in hepatocytes. In the mice samples, seven metabolites were identified, which mostly matched the metabolites in the human samples. However, less flubromazolam N+-glucuronide and an additional hydroxy metabolite were observed. The six human urine specimens showed different extent of metabolism: some samples had an intense flubromazolam peak next to a minute signal for a monohydroxy metabolite, others showed the whole variety of hydroxylated and glucuronidated metabolites. Overall, the most abundant metabolite was a monohydroxy metabolite, which we propose as α-hydroxyflubromazolam based on MSMS fragmentation. These metabolism data will assist in interpretation and analytical method development.


Assuntos
Benzodiazepinas/farmacocinética , Drogas Desenhadas/farmacocinética , Psicotrópicos/farmacocinética , Animais , Cromatografia Líquida , Hepatócitos/metabolismo , Humanos , Hidroxilação , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA