Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(1): 73-85, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34633007

RESUMO

A novel time-resolved pump-probe spectroscopic approach that enables to keep high resolution in both the time and energy domain, nanosecond excitation-picosecond ionization-picosecond infrared probe (ns-ps-ps TRIR) spectroscopy, has been applied to the trans-4-methylformanilide-water (4MetFA-W) cluster. Water migration dynamics from the CO to the NH binding site in a peptide linkage triggered by photoionization of 4MetFA-W is directly monitored by the ps time evolution of IR spectra, and the presence of an intermediate state is revealed. The time evolution is analyzed by rate equations based on a four-state model of the migration dynamics. Time constants for the initial to the intermediate and hot product and to the final product are obtained. The acceleration of the dynamics by methyl substitution and the strong contribution of intracluster vibrational energy redistribution in the termination of the solvation dynamics is suggested. This picture is well confirmed by the ab initio on-the-fly molecular dynamics simulations. Vibrational assignments of 4MetFA and 4MetFA-W in the neutral (S0 and S1) and ionic (D0) electronic states measured by ns IR dip and electron-impact IR photodissociation spectroscopy are also discussed prior to the results of time-resolved spectroscopy.

2.
Phys Chem Chem Phys ; 22(29): 16536-16551, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32515444

RESUMO

Absorption of ultraviolet light is known as a major source of carcinogenic mutations of DNA. The underlying processes of excitation energy dissipation are yet not fully understood. In this work we provide a new and generally applicable route for studying the excitation energy transport in multi-chromophoric complexes at an atomistic level. The surface-hopping approach in the frame of the extended Frenkel exciton model combined with QM/MM techniques allowed us to simulate the photodynamics of the alternating (dAdT)10:(dAdT)10 double-stranded DNA. In accordance with recent experiments, we find that the excited state decay is multiexponential, involving a long and a short component which are due to two distinct mechanisms: formation of long-lived delocalized excitonic and charge transfer states vs. ultrafast decaying localized states resembling those of the bare nucleobases. Our simulations explain all stages of the ultrafast photodynamics including initial photoexcitation, dynamical evolution out of the Franck-Condon region, excimer formation and nonradiative relaxation to the ground state.


Assuntos
DNA/química , Transferência de Energia , Modelos Químicos , Mutação , Raios Ultravioleta
3.
Phys Chem Chem Phys ; 19(33): 22564-22572, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28809963

RESUMO

Most proteins work in aqueous solution and the interaction with water strongly affects their structure and function. However, experimentally the motion of a specific single water molecule is difficult to trace by conventional methods, because they average over the heterogeneous solvation structure of bulk water surrounding the protein. Here, we provide a detailed atomistic picture of the water rearrangement dynamics around the -CONH- peptide linkage in the two model systems formanilide and acetanilide, which simply differ by the presence of a methyl group at the peptide linkage. The combination of picosecond pump-probe time-resolved infrared spectroscopy and molecular dynamics simulations demonstrates that the solvation dynamics at the molecular level is strongly influenced by this small structural difference. The effective timescales for solvent migration triggered by ionization are mainly controlled by the efficiency of the kinetic energy redistribution rather than the shape of the potential energy surface. This approach provides a fundamental understanding of protein hydration and may help to design functional molecules in solution with tailored properties.


Assuntos
Peptídeos/química , Solventes/química , Acetanilidas/química , Formamidas/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Espectrofotometria Infravermelho , Água/química
4.
J Chem Phys ; 147(1): 013902, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688397

RESUMO

We investigate the photodynamics of the 2-methylallyl radical by femtosecond time-resolved photoelectron imaging. The experiments are accompanied by field-induced surface hopping dynamics calculations and the simulation of time-resolved photoelectron intensities and anisotropies, giving insight into the photochemistry and nonradiative relaxation of the radical. 2-methylallyl is excited at 236 nm, 238 nm, and 240.6 nm into a 3p Rydberg state, and the subsequent dynamics is probed by multiphoton ionization using photons of 800 nm. The photoelectron image exhibits a prominent band with considerable anisotropy, which is compatible with the result of theory. The simulations show that the initially excited 3p state is rapidly depopulated to a 3s Rydberg state, from which photoelectrons of high anisotropy are produced. The 3s state then decays within several 100 fs to the D1 (nπ) state, followed by the deactivation of the D1 to the electronic ground state on the ps time scale.

5.
J Phys Chem A ; 120(45): 8976-8982, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27779397

RESUMO

We introduce a general theoretical approach for the simulation of photochemical dynamics under the influence of circularly polarized light to explore the possibility of generating enantiomeric enrichment through polarized-light-selective photochemistry. The method is applied to the simulation of the photolysis of alanine, a prototype chiral amino acid. We show that a systematic enantiomeric enrichment can be obtained depending on the helicity of the circularly polarized light that induces the excited-state photochemistry of alanine. By analyzing the patterns of the photoinduced fragmentation of alanine we find an inducible enantiomeric enrichment up to 1.7%, which is also in good correspondence to the experimental findings. Our method is generally applicable to complex systems and might serve to systematically explore the photochemical origin of homochirality.

6.
Phys Chem Chem Phys ; 17(44): 29969-77, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26490096

RESUMO

The dynamics of a solvent is important for many chemical and biological processes. Here, the migration dynamics of a single water molecule is triggered by the photoionization of the 4-aminobenzonitrile-water (4ABN-W) cluster and monitored in real time by picosecond time-resolved IR (ps TRIR) spectroscopy. In the neutral cluster, water is hydrogen-bonded to the CN group. When this CN-bound cluster is selectively ionized with an excess energy of 1238 cm(-1), water migrates with a lifetime of τ = 17 ps from the CN to the NH2 group, forming a more stable 4ABN(+)-W(NH) isomer with a yield of unity. By decreasing the ionization excess energy, the yield of the CN → NH2 reaction is reduced. The relatively slow migration in comparison to the ionization-induced solvent dynamics in the related acetanilide-water cluster cation (τ = 5 ps) is discussed in terms of the internal excess energy after photoionization and the shape of the potential energy surface.

7.
Angew Chem Int Ed Engl ; 53(52): 14601-4, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25431033

RESUMO

The dynamics and energetics of water at interfaces or in biological systems plays a fundamental role in all solvation and biological phenomena in aqueous solution. In particular, the migration of water molecules is the first step that controls the overall process in the time domain. Experimentally, the dynamics of individual water molecules is nearly impossible to follow in solution, because signals from molecules in heterogeneous environments overlap. Although molecular dynamics simulations do not have this restriction, there is a lack of experimental data to validate the calculated dynamics. Here, we demonstrate a new strategy, in which the calculated dynamics are verified by measured time-resolved infrared spectra. The coexistence of fast and slow migrations of water molecules around a CONH peptide linkage is revealed for a model system representative of a hydrate peptide.

8.
Chemphyschem ; 14(7): 1377-86, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23589486

RESUMO

We wish to present the application of our field-induced surface-hopping (FISH) method to simulate nonlinear absorption dynamics induced by strong nonresonant laser fields. We provide a systematic comparison of the FISH approach with exact quantum dynamics simulations on a multistate model system and demonstrate that FISH allows for accurate simulations of nonlinear excitation processes including multiphoton electronic transitions. In particular, two different approaches for simulating two-photon transitions are compared. The first approach is essentially exact and involves the solution of the time-dependent Schrödinger equation in an extended manifold of excited states, while in the second one only transiently populated nonessential states are replaced by an effective quadratic coupling term, and dynamics is performed in a considerably smaller manifold of states. We illustrate the applicability of our method to complex molecular systems by simulating the linear and nonlinear laser-driven dynamics in zinc (Zn) porphyrin in the gas phase and in water. For this purpose, the FISH approach is connected with the quantum mechanical-molecular mechanical approach (QM/MM) which is generally applicable to large classes of complex systems. Our findings that multiphoton absorption and dynamics increase the population of higher excited states of Zn porphyrin in the nonlinear regime, in particular in solution, provides a means for manipulating excited-state properties, such as transient absorption dynamics and electronic relaxation.


Assuntos
Metaloporfirinas/química , Dinâmica não Linear , Teoria Quântica , Água/química , Propriedades de Superfície
9.
J Chem Phys ; 139(13): 134104, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24116549

RESUMO

We present an efficient method for the simulation of time-resolved photoelectron imaging (TRPEI) spectra in polyatomic molecules. Our approach combines trajectory-based molecular dynamics that account for non-adiabatic effects using surface hopping, with an approximate treatment of the photoionization process using Dyson orbitals as initial and Coulomb waves as final electron states. The method has been implemented in the frame of linear response time-dependent density functional theory. As an illustration, we simulate time- and energy-resolved anisotropy maps for the furan molecule and compare them with recent experimental data [T. Fuji, Y.-I. Suzuki, T. Horio, T. Suzuki, R. Mitric, U. Werner, and V. Bonacic-Koutecký, J. Chem. Phys. 133, 234303 (2010)]. Our method can be generally used for the interpretation of TRPEI experiments allowing to shed light into the fundamental photochemical processes in complex molecules.

10.
Phys Chem Chem Phys ; 14(14): 4687-94, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22307762

RESUMO

We investigate theoretically the control of the ultrafast excited state dynamics of adenine in water by laser pulse trains, with the aim to extend the excited state lifetime and to suppress nonradiative relaxation processes. For this purpose, we introduce the combination of our field-induced surface hopping method (FISH) with the quantum mechanical-molecular mechanical (QM/MM) technique for simulating the laser-driven dynamics in the condensed phase under explicit inclusion of the solvent environment. Moreover, we employ parametric pulse shaping in the frequency domain in order to design simplified laser pulse trains allowing to establish a direct link between the pulse parameters and the controlled dynamics. We construct pulse trains which achieve a high excitation efficiency and at the same time keep a high excited state population for a significantly extended time period compared to the uncontrolled dynamics. The control mechanism involves a sequential cycling of the population between the lowest and higher excited states, thereby utilizing the properties of the corresponding potential energy surfaces to avoid conical intersections and thus to suppress the nonradiative decay to the ground state. Our findings provide a means to increase the fluorescence yield of molecules with an intrinsically very short excited state lifetime, which can lead to novel applications of shaped laser fields in the context of biosensing.


Assuntos
Adenina/química , Lasers , Água/química , Modelos Moleculares , Teoria Quântica , Raios Ultravioleta
11.
Phys Chem Chem Phys ; 13(19): 8690-6, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21483897

RESUMO

We present the simulation of time-resolved photoelectron spectra of Ag(3) involving excitation from the linear transition state, where nonadiabatic relaxation takes place in a complex manifold of electronic states. Thus, we address ultrafast processes reachable by negative ion-to neutral-to positive ion (NeNePo) spectroscopy starting from the linear Ag anionic species. For this purpose we use our newly developed field-induced surface hopping method (FISH) augmented for the description of photoionization processes. Furthermore we employ our method for nonadiabatic molecular dynamics "on the fly" in the framework of time-dependent density functional theory generalized for open shell systems. Our presented approach is generally applicable for the prediction of time-resolved photoelectron spectra and their analysis in systems with complex electronic structure as well as many nuclear degrees freedom. This theoretical development should serve to stimulate new ultrafast experiments.


Assuntos
Teoria Quântica , Prata/química , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Fatores de Tempo
12.
J Phys Chem A ; 115(16): 3755-65, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20939619

RESUMO

We present the extension of our field-induced surface hopping method for the description of the photoionization process and the simulation of time-resolved photoelectron spectra (TRPES). This is based on the combination of nonadiabatic molecular dynamics "on the fly" in the framework of TDDFT generalized for open shell systems under the influence of laser fields with the approximate quantum mechanical description of the photoionization process. Since arbitrary pulse shapes can be employed, this method can be also combined with the optimal control theory in order to steer the photoionization or to shape the outgoing electronic wavepackets. We illustrate our method for the simulation of TRPES on the prototype system of Ag(3), which involves excitation from the equilibrium triangular geometry, as well as excitation from the linear transition state, where in both cases nonadiabatic relaxation takes place in a complex manifold of electronic states. Our approach represents a generally applicable method for the prediction of time-resolved photoelectron spectra and their analysis in systems with complex electronic structure as well as many nuclear degrees freedom. This theoretical development should serve to stimulate new ultrafast experiments.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Prata/química , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Fatores de Tempo
13.
J Chem Phys ; 135(5): 054105, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21823688

RESUMO

We present a combination of time-dependent density functional theory with the quantum mechanical/molecular mechanical approach which can be applied to study nonadiabatic dynamical processes in molecular systems interacting with the environment. Our method is illustrated on the example of ultrafast excited state dynamics of indole in water. We compare the mechanisms of nonradiative relaxation and the electronic state lifetimes for isolated indole, indole in a sphere of classical water, and indole + 3H(2)O embedded in a classical water sphere. In the case of isolated indole, the initial excitation to the S(2) electronic state is followed by an ultrafast internal conversion to the S(1) state with a time constant of 17 fs. The S(1) state is long living (>30 ps) and deactivates to the ground state along the N-H stretching coordinate. This deactivation mechanism remains unchanged for indole in a classical water sphere. However, the lifetimes of the S(2) and S(1) electronic states are extended. The inclusion of three explicit water molecules opens a new relaxation channel which involves the electron transfer to the solvent, leading eventually to the formation of a solvated electron. The relaxation to the ground state takes place on a time scale of 60 fs and contributes to the lowering of the fluorescence quantum yield. Our simulations demonstrate the importance of including explicit water molecules in the theoretical treatment of solvated systems.

14.
J Phys Chem A ; 113(45): 12700-5, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19702287

RESUMO

A nonadiabatic molecular dynamics is implemented in the framework of the time-dependent density functional tight binding method (TDDFTB) combined with Tully's stochastic surface hopping algorithm. The applicability of our method to complex molecular systems is illustrated on the example of the ultrafast excited state dynamics of microsolvated adenine. Our results demonstrate that in the presence of water, upon initial excitation to the S(3) (pi-pi*) state at 260 nm, an ultrafast relaxation to the S(1) state with a time constant of 16 fs is induced, followed by the radiationless decay to the ground state with a time constant of 200 fs.

15.
J Phys Chem B ; 116(30): 8762-70, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22726221

RESUMO

We present a theoretical simulation of the ultrafast nonadiabatic photodynamics of tyrosine in the gas phase and in water. For this purpose, we combine our TDDFT/MM nonadiabatic dynamics (Wohlgemuth et al. J. Chem. Phys. 2011, 135, 054105) with the field-induced surface hopping method (Mitric et al. Phys. Rev. A 2009, 79, 053416) allowing us to explicitly include the nonadiabatic effects as well as femtosecond laser excitation into the simulation. Our results reveal an ultrafast deactivation of the initially excited bright ππ* state by internal conversion to a dark nπ* state. We observe deactivation channels along the O-H stretching coordinate as well as involving the N-H bond cleavage of the amino group followed by proton transfer to the phenol ring, which is in agreement with previous static energy path calculations. However, since in the gas phase the canonical form of tyrosine is the most stable one, the proton transfer proceeds in two steps, starting from the carboxyl group that first passes its proton to the amino group, from where it finally moves to the phenol ring. Furthermore, we also investigate the influence of water on the relaxation processes. For the system of tyrosine with three explicit water molecules solvating the amino group, embedded in a classical water sphere, we also observe a relaxation channel involving proton transfer to the phenol ring. However, in aqueous environment, a water molecule near the protonated amino group of tyrosine acts as a mediator for the proton transfer, underlining the importance of the solvent in nonradiative relaxation processes of amino acids.


Assuntos
Tirosina/química , Água/química , Gases/química , Modelos Moleculares , Prótons , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA