Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(4): 2780-2805, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193529

RESUMO

Calcium carbonate, particularly in the form of calcite, is an abundant mineral widely used in both human-made products and biological systems. The calcite surface possesses a high surface energy, making it susceptible to the adsorption of organic contaminants. Moreover, the surface is also reactive towards a range of chemicals, including water. Consequently, studying and maintaining a clean and stable calcite surface is only possible under ultrahigh vacuum conditions and for limited amounts of time. When exposed to air or solution, the calcite surface undergoes rapid transformations, demanding a comprehensive understanding of the properties of calcite surfaces in different environments. Similarly, attention must also be directed towards the kinetics of changes, whether induced by fluctuating environments or at constant condition. All these aspects are encompassed in the expression "dynamic nature", and are of crucial importance in the context of the diverse applications of calcite. In many instances, the calcite surface is modified by adsorption of fatty acids to impart a desired nonpolar character. Although the binding between carboxylic acid groups and calcite surfaces is strong, the fatty acid layer used for surface modification undergoes significant alterations when exposed to water vapour and liquid water droplets. Therefore, it is also crucial to understand the dynamic nature of the adsorbed layer. This review article provides a comprehensive overview of the current understanding of both the dynamics of the calcite surface as well as when modified by fatty acid surface treatments.

2.
Langmuir ; 39(42): 14840-14852, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37824837

RESUMO

A fundamental understanding of the interactions between mineral surfaces and amphiphilic surface modification agents is needed for better control over the production and uses of mineral fillers. Here, we controlled the carboxylic acid layer formation conditions on calcite surfaces with high precision via vapor deposition. The properties of the resulting carboxylic acid layers were analyzed using surface-sensitive techniques, such as atomic force microscopy (AFM), contact angle measurements, angle resolved X-ray photoelectron spectroscopy (XPS), and vibrational sum-frequency spectroscopy. A low wettability was achieved with long hydrocarbon chain carboxylic acids such as stearic acid. The stearic acid layer formed by vapor deposition is initially patchy, but with increasing vapor exposure time, the patches grow and condense into a homogeneous layer with a thickness close to that expected for a monolayer as evaluated by AFM and XPS. The build-up process of the layer occurs more rapidly at higher temperatures due to the higher vapor pressure. The stability of the deposited fatty acid layer in the presence of a water droplet increases with the chain length and packing density in the adsorbed layer. Vibrational sum frequency spectroscopy data demonstrate that the stearic acid monolayers on calcite have their alkyl chains in an all-trans conformation and are anisotropically distributed on the plane of the surface, forming epitaxial monolayers. Vibrational spectra also show that the stearic acid molecules interact with the calcite surface through the carboxylic acid headgroup in both its protonated and deprotonated forms. The results presented provide new molecular insights into the properties of adsorbed carboxylic acid layers on calcite.

3.
Langmuir ; 37(48): 14135-14146, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34793681

RESUMO

A profound understanding of the properties of unmodified and saturated fatty acid-modified calcite surfaces is essential for elucidating their resistance and stability in the presence of water droplets. Additional insights can be obtained by also studying the effects of carboxylic acid-saturated aqueous solutions. We elucidate surface wettability, structure, and nanomechanical properties beneath and at the edge of a deposited droplet after its evaporation. When calcite was coated by a highly packed monolayer of stearic acid, a hydrophilic region was found at the three-phase contact line. In atomic force microscopy mapping, this region is characterized by low adhesion and a topographical hillock. The surface that previously was covered by the droplet demonstrated a patchy structure of about 6 nm height, implying stearic acid reorganization into a patchy bilayer-like structure. Our data suggest that during droplet reverse dispensing and droplet evaporation, pinning of the three-phase contact line leads to the transport of dissolved fatty carboxylic acid and possibly calcium bicarbonate Ca(HCO3)2 molecules to the contact line boundary. Compared to the surface of intrinsically hydrophobic materials, such as polystyrene, the changes in contact angle and base diameter during droplet evaporation on stearic acid-modified calcite are strikingly different. This difference is due to stearic acid reorganization on the surface and transport to the water-air interface of the droplet. An effect of the evaporating droplet is also observed on unmodified calcite due to dissolution and recrystallization of the calcite surface in the presence of water. In the case where a water droplet saturated with octanoic acid is used instead of water, the stearic acid-coated calcite remains considerably more stable. Our findings are discussed in terms of the coffee-ring effect.


Assuntos
Carbonato de Cálcio , Água , Caprilatos , Ácidos Graxos , Propriedades de Superfície
4.
Langmuir ; 37(32): 9826-9837, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34355909

RESUMO

Understanding the wear of mineral fillers is crucial for controlling industrial processes, and in the present work, we examine the wear resistance and nanomechanical properties of bare calcite and stearic acid-modified calcite surfaces under dry and humid conditions at the nanoscale. Measurements under different loads allow us to probe the situation in the absence and presence of abrasive wear. The sliding motion is in general characterized by irregular stick-slip events that at higher loads lead to abrasion of the brittle calcite surface. Bare calcite is hydrophilic, and under humid conditions, a thin water layer is present on the surface. This water layer does not affect the friction force. However, it slightly decreases the wear depth and strongly influences the distribution of wear particles. In contrast, stearic acid-modified surfaces are hydrophobic. Nevertheless, humidity affects the wear characteristics by decreasing the binding strength of stearic acid at higher humidity. A complete monolayer coverage of calcite by stearic acid results in a significant reduction in wear but only a moderate reduction in friction forces at low humidity and no reduction at 75% relative humidity (RH). Thus, our data suggest that the wear reduction does not result from a lowering of the friction force but rather from an increased ductility of the surface region as offered by the stearic acid layer. An incomplete monolayer of stearic acid on the calcite surface provides no reduction in wear regardless of the RH investigated. Clearly, the wear properties of modified calcite surfaces depend crucially on the packing density of the surface modifier and also on the air humidity.

5.
J Colloid Interface Sci ; 541: 42-55, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682592

RESUMO

Understanding the complex and dynamic nature of calcite surfaces under ambient conditions is important for optimizing industrial applications. It is essential to identify processes, their reversibility, and the relevant properties of CaCO3 solid-liquid and solid-gas interfaces under different environmental conditions, such as at increased relative humidity (RH). This work elucidates changes in surface properties on freshly cleaved calcite (topography, wettability and surface forces) as a function of time (≤28 h) at controlled humidity (≤3-95 %RH) and temperature (25.5 °C), evaluated with atomic force microscopy (AFM) and contact angle techniques. In the presence of humidity, the wettability decreased, liquid water capillary forces dominated over van der Waals forces, and surface domains, such as hillocks, height about 7.0 Å, and trenches, depth about -3.5 Å, appeared and grew primarily in lateral dimensions. Hillocks demonstrated lower adhesion and higher deformation in AFM experiments. We propose that the growing surface domains were formed by ion dissolution and diffusion followed by formation of hydrated salt of CaCO3. Upon drying, the height of the hillocks decreased by about 50% suggesting their alteration into dehydrated or less hydrated CaCO3. However, the process was not entirely reversible and crystallization of new domains continued at a reduced rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA