Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cancer Invest ; 41(5): 474-486, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37143339

RESUMO

Mutational testing for Gastrointestinal Stromal Tumor (GIST) patients remains underutilized. In this retrospective analysis, the target population (n = 1556) reported: 904 had molecular testing ("Tested") vs. 652 without testing ("Untested"). Overall survival (OS) was 14.7 vs. 12.7 years (p < 0.00001), in metastatic patients 1st line OS was 8.9 vs. 5.9 years in the Tested vs. Untested group (n = 416 vs. n = 254), respectively. From 1st - 3rd-line, no difference has been (self-)reported for progression-free survival (PFS). Dropout to/for further lines of treatment was 15% for patients with a Tested mutation vs. 47% in Untested patients.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Humanos , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/patologia , Mesilato de Imatinib , Estudos Retrospectivos , Intervalo Livre de Doença , Técnicas de Diagnóstico Molecular , Sistema de Registros , Antineoplásicos/uso terapêutico , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/genética
2.
BMC Biol ; 20(1): 163, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840963

RESUMO

INTRODUCTION: Aggressive cancers commonly ferment glucose to lactic acid at high rates, even in the presence of oxygen. This is known as aerobic glycolysis, or the "Warburg Effect." It is widely assumed that this is a consequence of the upregulation of glycolytic enzymes. Oncogenic drivers can increase the expression of most proteins in the glycolytic pathway, including the terminal step of exporting H+ equivalents from the cytoplasm. Proton exporters maintain an alkaline cytoplasmic pH, which can enhance all glycolytic enzyme activities, even in the absence of oncogene-related expression changes. Based on this observation, we hypothesized that increased uptake and fermentative metabolism of glucose could be driven by the expulsion of H+ equivalents from the cell. RESULTS: To test this hypothesis, we stably transfected lowly glycolytic MCF-7, U2-OS, and glycolytic HEK293 cells to express proton-exporting systems: either PMA1 (plasma membrane ATPase 1, a yeast H+-ATPase) or CA-IX (carbonic anhydrase 9). The expression of either exporter in vitro enhanced aerobic glycolysis as measured by glucose consumption, lactate production, and extracellular acidification rate. This resulted in an increased intracellular pH, and metabolomic analyses indicated that this was associated with an increased flux of all glycolytic enzymes upstream of pyruvate kinase. These cells also demonstrated increased migratory and invasive phenotypes in vitro, and these were recapitulated in vivo by more aggressive behavior, whereby the acid-producing cells formed higher-grade tumors with higher rates of metastases. Neutralizing tumor acidity with oral buffers reduced the metastatic burden. CONCLUSIONS: Therefore, cancer cells which increase export of H+ equivalents subsequently increase intracellular alkalization, even without oncogenic driver mutations, and this is sufficient to alter cancer metabolism towards an upregulation of aerobic glycolysis, a Warburg phenotype. Overall, we have shown that the traditional understanding of cancer cells favoring glycolysis and the subsequent extracellular acidification is not always linear. Cells which can, independent of metabolism, acidify through proton exporter activity can sufficiently drive their metabolism towards glycolysis providing an important fitness advantage for survival.


Assuntos
Neoplasias , Prótons , Glucose/metabolismo , Glicólise/fisiologia , Células HEK293 , Humanos , Ácido Láctico/metabolismo , Neoplasias/metabolismo
3.
Cell Rep ; 39(6): 110796, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545051

RESUMO

Malignant tumors exhibit altered metabolism resulting in a highly acidic extracellular microenvironment. Here, we show that cytoplasmic lipid droplet (LD) accumulation, indicative of a lipogenic phenotype, is a cellular adaption to extracellular acidity. LD marker PLIN2 is strongly associated with poor overall survival in breast cancer patients. Acid-induced LD accumulation is triggered by activation of the acid-sensing G-protein-coupled receptor (GPCR) OGR1, which is expressed highly in breast tumors. OGR1 depletion inhibits acid-induced lipid accumulation, while activation by a synthetic agonist triggers LD formation. Inhibition of OGR1 downstream signaling abrogates the lipogenic phenotype, which can be rescued with OGR1 ectopic expression. OGR1-depleted cells show growth inhibition under acidic growth conditions in vitro and tumor formation in vivo. Isotope tracing shows that the source of lipid precursors is primarily autophagy-derived ketogenic amino acids. OGR1-depleted cells are defective in endoplasmic reticulum stress response and autophagy and hence fail to accumulate LDs affecting survival under acidic stress.


Assuntos
Lipogênese , Neoplasias , Ácidos , Autofagia , Humanos , Lipídeos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia
4.
J Pharmacol Exp Ther ; 337(1): 65-74, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21228063

RESUMO

Exposure of the human malignant peripheral nerve sheath tumor cell lines STS-26T, ST88-14, and NF90-8 to nanomolar concentrations of both lovastatin and farnesyl transferase inhibitor (FTI)-1 but not to either drug alone induced cell death. ST88-14 and NF90-8 cells underwent apoptosis, yet dying STS-26T cells did not. FTI-1 cotreatment induced a strong and sustained autophagic response as indicated by analyses of microtubule-associated protein-1 light chain 3 (LC3)-II accumulation in STS-26T cultures. Extensive colocalization of LC3-positive punctate spots was observed with both lysosome-associated membrane protein (LAMP)-1 and LAMP-2 (markers of late endosomes/lysosomes) in solvent or FTI-1 or lovastatin-treated STS-26T cultures but very little colocalization in lovastatin/FTI-1-cotreated cultures. The absence of colocalization in the cotreatment protocol correlated with loss of LAMP-2 expression. Autophagic flux studies indicated that lovastatin/FTI-1 cotreatment inhibited the completion of the autophagic program. In contrast, rapamycin induced an autophagic response that was associated with cytostasis but maintenance of viability. These studies indicate that cotreatment of STS-26T cells with lovastatin and FTI-1 induces an abortive autophagic program and nonapoptotic cell death.


Assuntos
Apoptose , Autofagia/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Farnesiltranstransferase/antagonistas & inibidores , Lovastatina/administração & dosagem , Animais , Autofagia/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Combinação de Medicamentos , Farnesiltranstransferase/metabolismo , Humanos , Camundongos , Ratos
5.
NMR Biomed ; 24(6): 582-91, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21387439

RESUMO

Metastasis is a multistep process that culminates in the spread of cells from a primary tumor to a distant site or organs. For tumor cells to be able to metastasize, they have to locally invade through basement membrane into the lymphatic and the blood vasculatures. Eventually they extravasate from the blood and colonize in the secondary organ. This process involves multiple interactions between the tumor cells and their microenvironments. The microenvironment surrounding tumors has a significant impact on tumor development and progression. A key factor in the microenvironment is an acidic pH. The extracellular pH of solid tumors is more acidic in comparison to normal tissue as a consequence of high glycolysis and poor perfusion. It plays an important role in almost all steps of metastasis. The past decades have seen development of technologies to non-invasively measure intra- and/or extracellular pH. Most successful measurements are MR-based, and sensitivity and accuracy have dramatically improved. Quantitatively imaging the distribution of acidity helps us understand the role of the tumor microenvironment in cancer progression. The present review discusses different MR methods in measuring tumor pH along with emphasizing the importance of extracelluar tumor low pH on different steps of metastasis; more specifically focusing on epithelial-to-mesenchymal transition (EMT), and anti cancer immunity.


Assuntos
Imageamento por Ressonância Magnética/métodos , Metástase Neoplásica/diagnóstico , Animais , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos
6.
Mol Pharm ; 8(6): 2032-8, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-21981633

RESUMO

Despite advances in developing novel therapeutic strategies, a major factor underlying cancer related death remains resistance to therapy. In addition to biochemical resistance, mediated by xenobiotic transporters or binding site mutations, resistance can be physiological, emerging as a consequence of the tumor's physical microenvironment. This review focuses on extracellular acidosis, an end result of high glycolytic flux and poor vascular perfusion. Low extracellular pH, pHe, forms a physiological drug barrier described by an "ion trapping" phenomenon. We describe how the acid-outside plasmalemmal pH gradient negatively impacts drug efficacy of weak base chemotherapies but is better suited for weakly acidic therapeutics. We will also explore the physiologic changes tumor cells undergo in response to extracellular acidosis which contribute to drug resistance including reduced apoptotic potential, genetic alterations, and elevated activity of a multidrug transporter, p-glycoprotein, pGP. Since low pHe is a hallmark of solid tumors, therapeutic strategies designed to overcome or exploit this condition can be developed.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Microambiente Tumoral/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos
7.
J Pharmacol Exp Ther ; 333(1): 23-33, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20086055

RESUMO

Prenylation inhibitors have gained increasing attention as potential therapeutics for cancer. Initial work focused on inhibitors of farnesylation, but more recently geranylgeranyl transferase inhibitors (GGTIs) have begun to be evaluated for their potential antitumor activity in vitro and in vivo. In this study, we have developed a nonpeptidomimetic GGTI, termed GGTI-2Z [(5-nitrofuran-2-yl)methyl-(2Z,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl 4-chlorobutyl(methyl)phosphoramidate], which in combination with lovastatin inhibits geranylgeranyl transferase I (GGTase I) and GGTase II/RabGGTase, without affecting farnesylation. The combination treatment results in a G(0)/G(1) arrest and synergistic inhibition of proliferation of cultured STS-26T malignant peripheral nerve sheath tumor cells. We also show that the antiproliferative activity of drugs in combination occurs in the context of autophagy. The combination treatment also induces autophagy in the MCF10.DCIS model of human breast ductal carcinoma in situ and in 1c1c7 murine hepatoma cells, where it also reduces proliferation. At the same time, there is no detectable toxicity in normal immortalized Schwann cells. These studies establish GGTI-2Z as a novel geranylgeranyl pyrophosphate derivative that may work through a new mechanism involving the induction of autophagy and, in combination with lovastatin, may serve as a valuable paradigm for developing more effective strategies in this class of antitumor therapeutics.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Antineoplásicos/farmacologia , Autofagia , Diterpenos/farmacologia , Lovastatina/farmacologia , Compostos Organofosforados/farmacologia , Transferases/antagonistas & inibidores , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Fase G1/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Humanos , Camundongos , Prenilação de Proteína , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos
8.
J Pharmacol Exp Ther ; 326(1): 1-11, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18367665

RESUMO

Neurofibromatosis type 1 (NF1) is a genetic disorder that is driven by the loss of neurofibromin (Nf) protein function. Nf contains a Ras-GTPase-activating protein domain, which directly regulates Ras signaling. Numerous clinical manifestations are associated with the loss of Nf and increased Ras activity. Ras proteins must be prenylated to traffic and functionally localize with target membranes. Hence, Ras is a potential therapeutic target for treating NF1. We have tested the efficacy of two novel farnesyl transferase inhibitors (FTIs), 1 and 2, alone or in combination with lovastatin, on two NF1 malignant peripheral nerve sheath tumor (MPNST) cell lines, NF90-8 and ST88-14. Single treatments of 1, 2, or lovastatin had no effect on Ras prenylation or MPNST cell proliferation. However, low micromolar combinations of 1 or 2 with lovastatin (FTI/lovastatin) reduced Ras prenylation in both MPNST cell lines. Furthermore, this FTI/lovastatin combination treatment reduced cell proliferation and induced an apoptotic response as shown by morphological analysis, procaspase-3/-7 activation, loss of mitochondrial membrane potential, and accumulation of cells with sub-G(1) DNA content. Little to no detectable toxicity was observed in normal rat Schwann cells following FTI/lovastatin combination treatment. These data support the hypothesis that combination FTI plus lovastatin therapy may be a potential treatment for NF1 MPNSTs.


Assuntos
Apoptose/efeitos dos fármacos , Farnesiltranstransferase/antagonistas & inibidores , Lovastatina/administração & dosagem , Neoplasias de Bainha Neural/tratamento farmacológico , Neoplasias de Bainha Neural/patologia , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/patologia , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Linhagem Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Quimioterapia Combinada , Inibidores Enzimáticos/administração & dosagem , Farnesiltranstransferase/metabolismo , Lovastatina/química , Neurofibromatose 1/enzimologia , Ratos , Ratos Sprague-Dawley
9.
J Med Chem ; 50(14): 3274-82, 2007 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-17555307

RESUMO

Certain farnesyl diphosphate (FPP) analogs are potent inhibitors of the potential anticancer drug target protein farnesyltransferase (FTase), but these compounds are not suitable as drug candidates. Thus, phosphoramidate prodrug derivatives of the monophosphate precursors of FPP-based FTase inhibitors have been synthesized. The monophosphates themselves were significantly more potent inhibitors of FTase than the corresponding FPP analogs. The effects of the prodrug 5b (a derivative of 3-allylfarnesyl monophosphate) have been evaluated on prenylation of RhoB and on the cell cycle in a human malignant schwannoma cell line (STS-26T). In combination treatments, 1-3 microM 5b plus 1 microM lovastatin induced a significant inhibition of RhoB prenylation, and a combination of these drugs at 1 microM each also resulted in significant cell cycle arrest in G1. Indeed, combinations as low as 50 nM lovastatin + 1 microM 5c or 250 nM lovastatin + 50 nM 5c were highly cytostatic in STS-26T cell culture.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Fosfatos de Poli-Isoprenil/síntese química , Fosfatos de Poli-Isoprenil/farmacologia , Pró-Fármacos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Pró-Fármacos/síntese química , Espectrometria de Massas por Ionização por Electrospray
10.
Sci Rep ; 7(1): 15285, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127321

RESUMO

Metabolism is a compartmentalized process, and it is apparent in studying cancer that tumors, like normal tissues, demonstrate metabolic cooperation between different cell types. Metabolic profiling of cells in 2D culture systems often fails to reflect the metabolism occurring within tissues in vivo due to lack of other cell types and 3D interaction. We designed a tooling and methodology to metabolically profile and compare 2D cultures with cancer cell spheroids, and microtissue slices from tumors, and normal organs. We observed differences in the basal metabolism of 2D and 3D cell cultures in response to metabolic inhibitors, and chemotherapeutics. The metabolic profiles of microtissues derived from normal organs (heart, kidney) were relatively consistent when comparing microtissues derived from the same organ. Treatment of heart and kidney microtissues with cardio- or nephro-toxins had early and marked effects on tissue metabolism. In contrast, microtissues derived from different regions of the same tumors exhibited significant metabolic heterogeneity, which correlated to histology. Hence, metabolic profiling of complex microtissues is necessary to understand the effects of metabolic co-operation and how this interaction, not only can be targeted for treatment, but this method can be used as a reproducible, early and sensitive measure of drug toxicity.


Assuntos
Metabolômica , Neoplasias/metabolismo , Esferoides Celulares/metabolismo , Células A549 , Animais , Técnicas de Cultura de Células/métodos , Células HCT116 , Humanos , Camundongos , Neoplasias/patologia , Esferoides Celulares/patologia
11.
Cancer Res ; 77(18): 4763-4772, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28536279

RESUMO

Genomic instability and high mutation rates cause cancer to acquire numerous mutations and chromosomal alterations during its somatic evolution; most are termed passengers because they do not confer cancer phenotypes. Evolutionary simulations and cancer genomic studies suggest that mildly deleterious passengers accumulate and can collectively slow cancer progression. Clinical data also suggest an association between passenger load and response to therapeutics, yet no causal link between the effects of passengers and cancer progression has been established. To assess this, we introduced increasing passenger loads into human cell lines and immunocompromised mouse models. We found that passengers dramatically reduced proliferative fitness (∼3% per Mb), slowed tumor growth, and reduced metastatic progression. We developed new genomic measures of damaging passenger load that can accurately predict the fitness costs of passengers in cell lines and in human breast cancers. We conclude that genomic instability and an elevated load of DNA alterations in cancer is a double-edged sword: it accelerates the accumulation of adaptive drivers, but incurs a harmful passenger load that can outweigh driver benefit. The effects of passenger alterations on cancer fitness were unrelated to enhanced immunity, as our tests were performed either in cell culture or in immunocompromised animals. Our findings refute traditional paradigms of passengers as neutral events, suggesting that passenger load reduces the fitness of cancer cells and slows or prevents progression of both primary and metastatic disease. The antitumor effects of chemotherapies can in part be due to the induction of genomic instability and increased passenger load. Cancer Res; 77(18); 4763-72. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Mama/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Pulmonares/secundário , Mutação , Animais , Mama/metabolismo , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Células Cultivadas , Progressão da Doença , Feminino , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos SCID
12.
Cancer Res ; 77(9): 2242-2254, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28249898

RESUMO

Ongoing intratumoral evolution is apparent in molecular variations among cancer cells from different regions of the same tumor, but genetic data alone provide little insight into environmental selection forces and cellular phenotypic adaptations that govern the underlying Darwinian dynamics. In three spontaneous murine cancers (prostate cancers in TRAMP and PTEN mice, pancreatic cancer in KPC mice), we identified two subpopulations with distinct niche construction adaptive strategies that remained stable in culture: (i) invasive cells that produce an acidic environment via upregulated aerobic glycolysis; and (ii) noninvasive cells that were angiogenic and metabolically near-normal. Darwinian interactions of these subpopulations were investigated in TRAMP prostate cancers. Computer simulations demonstrated invasive, acid-producing (C2) cells maintain a fitness advantage over noninvasive, angiogenic (C3) cells by promoting invasion and reducing efficacy of immune response. Immunohistochemical analysis of untreated tumors confirmed that C2 cells were invariably more abundant than C3 cells. However, the C2 adaptive strategy phenotype incurred a significant cost due to inefficient energy production (i.e., aerobic glycolysis) and depletion of resources for adaptations to an acidic environment. Mathematical model simulations predicted that small perturbations of the microenvironmental extracellular pH (pHe) could invert the cost/benefit ratio of the C2 strategy and select for C3 cells. In vivo, 200 mmol/L NaHCO3 added to the drinking water of 4-week-old TRAMP mice increased the intraprostatic pHe by 0.2 units and promoted proliferation of noninvasive C3 cells, which remained confined within the ducts so that primary cancer did not develop. A 0.2 pHe increase in established tumors increased the fraction of C3 cells and signficantly diminished growth of primary and metastatic tumors. In an experimental tumor construct, MCF7 and MDA-MB-231 breast cancer cells were coinjected into the mammary fat pad of SCID mice. C2-like MDA-MB-231 cells dominated in untreated animals, but C3-like MCF7 cells were selected and tumor growth slowed when intratumoral pHe was increased. Overall, our data support the use of mathematical modeling of intratumoral Darwinian interactions of environmental selection forces and cancer cell adaptive strategies. These models allow the tumor to be steered into a less invasive pathway through the application of small but selective biological force. Cancer Res; 77(9); 2242-54. ©2017 AACR.


Assuntos
Neoplasias da Mama/genética , Evolução Molecular , Neoplasias Pancreáticas/genética , Neoplasias da Próstata/genética , Seleção Genética/genética , Animais , Neoplasias da Mama/patologia , Linhagem da Célula/genética , Proliferação de Células/genética , Simulação por Computador , Feminino , Humanos , Células MCF-7 , Masculino , Camundongos , Modelos Teóricos , PTEN Fosfo-Hidrolase/genética , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/patologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biochem Pharmacol ; 72(11): 1485-92, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-16797490

RESUMO

Neurofibromatosis type 1 (NF1) is the most common cancer predisposition syndrome. NF1 patients present with a constellation of clinical manifestations and have an increased risk of developing certain benign and malignant tumors. This disease results from mutation within the gene encoding neurofibromin, a GTPase activating protein (GAP) for Ras. Functional loss of this protein compromises Ras inactivation, which leads to the aberrant growth and proliferation of neural crest-derived cells and, ultimately, tumor formation. Current management of NF1-associated malignancy involves radiation, surgical excision, and cytotoxic drugs. The limited success of these strategies has fueled researchers to further elucidate the molecular changes that drive tumor formation and progression. This discussion will highlight how intracellular signaling molecules, cell-surface receptors, and the tumor microenvironment constitute potential therapeutic targets, which may be relevant not only to NF1-related malignancy but also to other human cancers.


Assuntos
Genes da Neurofibromatose 1 , Predisposição Genética para Doença/genética , Terapia Genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Animais , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neurofibromatose 1/metabolismo , Neurofibromina 1/metabolismo , Transdução de Sinais
14.
PLoS One ; 11(5): e0155289, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27227903

RESUMO

TH-302 is a hypoxia-activated prodrug known to activate selectively under the hypoxic conditions commonly found in solid tumors. It is currently being evaluated in clinical trials, including two trials in Pancreatic Ductal Adenocarcinomas (PDAC). The current study was undertaken to evaluate imaging biomarkers for prediction and response monitoring of TH-302 efficacy in xenograft models of PDAC. Dynamic contrast-enhanced (DCE) and diffusion weighted (DW) magnetic resonance imaging (MRI) were used to monitor acute effects on tumor vasculature and cellularity, respectively. Three human PDAC xenografts with known differential responses to TH-302 were imaged prior to, and at 24 h and 48 hours following a single dose of TH-302 or vehicle to determine if imaging changes presaged changes in tumor volumes. DW-MRI was performed at five b-values to generate apparent diffusion coefficient of water (ADC) maps. For DCE-MRI, a standard clinically available contrast reagent, Gd-DTPA, was used to determine blood flow into the tumor region of interest. TH-302 induced a dramatic decrease in the DCE transfer constant (Ktrans) within 48 hours after treatment in the sensitive tumors, Hs766t and Mia PaCa-2, whereas TH-302 had no effect on the perfusion behavior of resistant SU.86.86 tumors. Tumor cellularity, estimated from ADC, was significantly increased 24 and 48 hours after treatment in Hs766t, but was not observed in the Mia PaCa-2 and SU.86.86 groups. Notably, growth inhibition of Hs766t was observed immediately (day 3) following initiation of treatment, but was not observed in MiaPaCa-2 tumors until 8 days after initiation of treatment. Based on these preclinical findings, DCE-MRI measures of vascular perfusion dynamics and ADC measures of cell density are suggested as potential TH-302 response biomarkers in clinical trials.


Assuntos
Biomarcadores Tumorais/metabolismo , Hipóxia , Imageamento por Ressonância Magnética , Nitroimidazóis , Neoplasias Pancreáticas , Mostardas de Fosforamida , Pró-Fármacos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , Nitroimidazóis/farmacocinética , Nitroimidazóis/farmacologia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Mostardas de Fosforamida/farmacocinética , Mostardas de Fosforamida/farmacologia , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncotarget ; 7(14): 17773-89, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894861

RESUMO

Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenoma/metabolismo , Adenoma/patologia , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Detecção Precoce de Câncer , Perfilação da Expressão Gênica , Células HT29 , Humanos , Imuno-Histoquímica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética
16.
Cancer Res ; 76(6): 1381-90, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26719539

RESUMO

Cancer immunotherapies, such as immune checkpoint blockade or adoptive T-cell transfer, can lead to durable responses in the clinic, but response rates remain low due to undefined suppression mechanisms. Solid tumors are characterized by a highly acidic microenvironment that might blunt the effectiveness of antitumor immunity. In this study, we directly investigated the effects of tumor acidity on the efficacy of immunotherapy. An acidic pH environment blocked T-cell activation and limited glycolysis in vitro. IFNγ release blocked by acidic pH did not occur at the level of steady-state mRNA, implying that the effect of acidity was posttranslational. Acidification did not affect cytoplasmic pH, suggesting that signals transduced by external acidity were likely mediated by specific acid-sensing receptors, four of which are expressed by T cells. Notably, neutralizing tumor acidity with bicarbonate monotherapy impaired the growth of some cancer types in mice where it was associated with increased T-cell infiltration. Furthermore, combining bicarbonate therapy with anti-CTLA-4, anti-PD1, or adoptive T-cell transfer improved antitumor responses in multiple models, including cures in some subjects. Overall, our findings show how raising intratumoral pH through oral buffers therapy can improve responses to immunotherapy, with the potential for immediate clinical translation.


Assuntos
Antineoplásicos/imunologia , Microambiente Tumoral/imunologia , Animais , Anticorpos/imunologia , Bicarbonatos/farmacologia , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Feminino , Concentração de Íons de Hidrogênio , Imunoterapia/métodos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Microambiente Tumoral/efeitos dos fármacos
17.
Cancer Res ; 75(22): 4675-80, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26527288

RESUMO

The dynamic cancer ecosystem, with its rich temporal and spatial diversity in environmental conditions and heritable cell phenotypes, is remarkably robust to therapeutic perturbations. Even when response to therapy is clinically complete, adaptive tumor strategies almost inevitably emerge and the tumor returns. Although evolution of resistance remains the proximate cause of death in most cancer patients, a recent analysis found that evolutionary terms were included in less than 1% of articles on the cancer treatment outcomes, and this has not changed in 30 years. Here, we review treatment methods that attempt to understand and exploit intratumoral evolution to prolong response to therapy. In general, we find that treating metastatic (i.e., noncurable) cancers using the traditional strategy aimed at killing the maximum number of tumor cells is evolutionarily unsound because, by eliminating all treatment-sensitive cells, it enables rapid proliferation of resistant populations-a well-known evolutionary phenomenon termed "competitive release." Alternative strategies, such as adaptive therapy, "ersatzdroges," and double-bind treatments, shift focus from eliminating tumor cells to evolution-based methods that suppress growth of resistant populations to maintain long-term control.


Assuntos
Evolução Molecular , Neoplasias/patologia , Neoplasias/terapia , Animais , Humanos
18.
Nat Commun ; 6: 8752, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658462

RESUMO

Early cancers are avascular and hence, profoundly acidic. Pre-malignant cells must adapt to acidosis to thrive in this hostile microenvironment. Here, we investigate MCF-7 cells that are adapted to grow in acidic conditions using SILAC proteomics and we reveal a significant upregulation of lysosomal proteins. Prominent among these is LAMP2 that functions to protect lysosomal membranes from acid proteolysis. LAMP2 upregulation by acidosis is confirmed both in vitro and in vivo. Furthermore, we show that the depletion of LAMP2 is sufficient to increase acidosis-mediated toxicity. In breast cancer patient samples, there is a high correlation of LAMP2 mRNA and protein expression with progression. We also observe that LAMP2 is located at the plasma membrane in clinical samples and this redistribution is acid-induced in vitro. Our findings suggest a potential adaptive mechanism, wherein cells chronically exposed to an acidic environment translocate lysosomal proteins to their surface, thus protecting the plasmalemma from acid-induced hydrolysis.


Assuntos
Membrana Celular/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Neoplasias/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Feminino , Humanos , Concentração de Íons de Hidrogênio , Proteína 2 de Membrana Associada ao Lisossomo/genética , Camundongos , Camundongos Nus , Neoplasias Experimentais/metabolismo , Análise Serial de Proteínas , Proteômica
19.
Cancer Metab ; 3(1): 2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25635223

RESUMO

BACKGROUND: Hypoxic niches in solid tumors harbor therapy-resistant cells. Hypoxia-activated prodrugs (HAPs) have been designed to overcome this resistance and, to date, have begun to show clinical efficacy. However, clinical HAPs activity could be improved. In this study, we sought to identify non-pharmacological methods to acutely exacerbate tumor hypoxia to increase TH-302 activity in pancreatic ductal adenocarcinoma (PDAC) tumor models. RESULTS: Three human PDAC cell lines with varying sensitivity to TH-302 (Hs766t > MiaPaCa-2 > SU.86.86) were used to establish PDAC xenograft models. PDAC cells were metabolically profiled in vitro and in vivo using the Seahorse XF system and hyperpolarized (13)C pyruvate MRI, respectively, in addition to quantitative immunohistochemistry. The effect of exogenous pyruvate on tumor oxygenation was determined using electroparamagnetic resonance (EPR) oxygen imaging. Hs766t and MiaPaCa-2 cells exhibited a glycolytic phenotype in comparison to TH-302 resistant line SU.86.86. Supporting this observation is a higher lactate/pyruvate ratio in Hs766t and MiaPaCa xenografts as observed during hyperpolarized pyruvate MRI studies in vivo. Coincidentally, response to exogenous pyruvate both in vitro (Seahorse oxygen consumption) and in vivo (EPR oxygen imaging) was greatest in Hs766t and MiaPaCa models, possibly due to a higher mitochondrial reserve capacity. Changes in oxygen consumption and in vivo hypoxic status to pyruvate were limited in the SU.86.86 model. Combination therapy of pyruvate plus TH-302 in vivo significantly decreased tumor growth and increased survival in the MiaPaCa model and improved survival in Hs766t tumors. CONCLUSIONS: Using metabolic profiling, functional imaging, and computational modeling, we show improved TH-302 activity by transiently increasing tumor hypoxia metabolically with exogenous pyruvate. Additionally, this work identified a set of biomarkers that may be used clinically to predict which tumors will be most responsive to pyruvate + TH-302 combination therapy. The results of this study support the concept that acute increases in tumor hypoxia can be beneficial for improving the clinical efficacy of HAPs and can positively impact the future treatment of PDAC and other cancers.

20.
Neoplasia ; 16(4): 354-64.e1-3, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24862761

RESUMO

Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit.


Assuntos
Soluções Tampão , Concentração de Íons de Hidrogênio , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Lisina/química , Lisina/farmacologia , Melanoma Experimental , Camundongos , Metástase Neoplásica , Neoplasias/mortalidade , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA