Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 21(5): 255-267, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32071436

RESUMO

Oncoproteins of the MYC family are major drivers of human tumorigenesis. Since a large body of evidence indicates that MYC proteins are transcription factors, studying their function has focused on the biology of their target genes. Detailed studies of MYC-dependent changes in RNA levels have provided contrasting models of the oncogenic activity of MYC proteins through either enhancing or repressing the expression of specific target genes, or as global amplifiers of transcription. In this Review, we first summarize the biochemistry of MYC proteins and what is known (or is unclear) about the MYC target genes. We then discuss recent progress in defining the interactomes of MYC and MYCN and how this information affects central concepts of MYC biology, focusing on mechanisms by which MYC proteins modulate transcription. MYC proteins promote transcription termination upon stalling of RNA polymerase II, and we propose that this mechanism enhances the stress resilience of basal transcription. Furthermore, MYC proteins coordinate transcription elongation with DNA replication and cell cycle progression. Finally, we argue that the mechanism by which MYC proteins regulate the transcription machinery is likely to promote tumorigenesis independently of global or relative changes in the expression of their target genes.


Assuntos
Proteína Proto-Oncogênica N-Myc/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transcrição Gênica , Carcinogênese/genética , Ciclo Celular/genética , Proliferação de Células/genética , Replicação do DNA/genética , Humanos , Proteínas Oncogênicas/genética , Fatores de Transcrição
2.
Mol Cell ; 82(1): 159-176.e12, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34847357

RESUMO

The MYCN oncoprotein drives the development of numerous neuroendocrine and pediatric tumors. Here we show that MYCN interacts with the nuclear RNA exosome, a 3'-5' exoribonuclease complex, and recruits the exosome to its target genes. In the absence of the exosome, MYCN-directed elongation by RNA polymerase II (RNAPII) is slow and non-productive on a large group of cell-cycle-regulated genes. During the S phase of MYCN-driven tumor cells, the exosome is required to prevent the accumulation of stalled replication forks and of double-strand breaks close to the transcription start sites. Upon depletion of the exosome, activation of ATM causes recruitment of BRCA1, which stabilizes nuclear mRNA decapping complexes, leading to MYCN-dependent transcription termination. Disruption of mRNA decapping in turn activates ATR, indicating transcription-replication conflicts. We propose that exosome recruitment by MYCN maintains productive transcription elongation during S phase and prevents transcription-replication conflicts to maintain the rapid proliferation of neuroendocrine tumor cells.


Assuntos
Núcleo Celular/enzimologia , Proliferação de Células , Replicação do DNA , Exossomos/enzimologia , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/enzimologia , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/genética , Quebras de DNA de Cadeia Dupla , Exorribonucleases/genética , Exorribonucleases/metabolismo , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Células NIH 3T3 , Neuroblastoma/genética , Neuroblastoma/patologia , Regiões Promotoras Genéticas , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Polimerase II/genética , Terminação da Transcrição Genética
3.
Mol Cell ; 81(15): 3110-3127.e14, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34233157

RESUMO

SPT6 is a histone chaperone that tightly binds RNA polymerase II (RNAPII) during transcription elongation. However, its primary role in transcription is uncertain. We used targeted protein degradation to rapidly deplete SPT6 in human cells and analyzed defects in RNAPII behavior by a multi-omics approach and mathematical modeling. Our data indicate that SPT6 is a crucial factor for RNAPII processivity and is therefore required for the productive transcription of protein-coding genes. Unexpectedly, SPT6 also has a vital role in RNAPII termination, as acute depletion induced readthrough transcription for thousands of genes. Long-term depletion of SPT6 induced cryptic intragenic transcription, as observed earlier in yeast. However, this phenotype was not observed upon acute SPT6 depletion and therefore can be attributed to accumulated epigenetic perturbations in the prolonged absence of SPT6. In conclusion, targeted degradation of SPT6 allowed the temporal discrimination of its function as an epigenetic safeguard and RNAPII elongation factor.


Assuntos
RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Linhagem Celular , Replicação do DNA , Humanos , Ácidos Indolacéticos/farmacologia , Poliadenilação , Proteólise/efeitos dos fármacos , RNA/biossíntese , RNA Polimerase II/genética , Fatores de Transcrição/genética
4.
Mol Cell ; 81(4): 830-844.e13, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33453168

RESUMO

The MYC oncoprotein globally affects the function of RNA polymerase II (RNAPII). The ability of MYC to promote transcription elongation depends on its ubiquitylation. Here, we show that MYC and PAF1c (polymerase II-associated factor 1 complex) interact directly and mutually enhance each other's association with active promoters. PAF1c is rapidly transferred from MYC onto RNAPII. This transfer is driven by the HUWE1 ubiquitin ligase and is required for MYC-dependent transcription elongation. MYC and HUWE1 promote histone H2B ubiquitylation, which alters chromatin structure both for transcription elongation and double-strand break repair. Consistently, MYC suppresses double-strand break accumulation in active genes in a strictly PAF1c-dependent manner. Depletion of PAF1c causes transcription-dependent accumulation of double-strand breaks, despite widespread repair-associated DNA synthesis. Our data show that the transfer of PAF1c from MYC onto RNAPII efficiently couples transcription elongation with double-strand break repair to maintain the genomic integrity of MYC-driven tumor cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Elongação da Transcrição Genética , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Linhagem Celular Tumoral , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Nat Immunol ; 17(11): 1312-1321, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27668798

RESUMO

Hematopoietic stem cells (HSCs) are dormant in the bone marrow and can be activated in response to diverse stresses to replenish all blood cell types. We identified the ubiquitin ligase Huwe1 as a crucial regulator of HSC function via its post-translational control of the oncoprotein N-myc (encoded by Mycn). We found Huwe1 to be essential for HSC self-renewal, quiescence and lymphoid-fate specification in mice. Through the use of a fluorescent fusion allele (MycnM), we observed that N-myc expression was restricted to the most immature, multipotent stem and progenitor populations. N-myc expression was upregulated in response to stress or following loss of Huwe1, which led to increased proliferation and stem-cell exhaustion. Mycn depletion reversed most of these phenotypes in vivo, which suggested that the attenuation of N-myc by Huwe1 is essential for reestablishing homeostasis following stress.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Linfócitos/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Ciclo Celular/genética , Linhagem Celular , Autorrenovação Celular/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Genes myc , Linfócitos/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Estresse Fisiológico , Transcrição Gênica , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo
6.
Nature ; 612(7938): 148-155, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424410

RESUMO

Oncoproteins of the MYC family drive the development of numerous human tumours1. In unperturbed cells, MYC proteins bind to nearly all active promoters and control transcription by RNA polymerase II2,3. MYC proteins can also coordinate transcription with DNA replication4,5 and promote the repair of transcription-associated DNA damage6, but how they exert these mechanistically diverse functions is unknown. Here we show that MYC dissociates from many of its binding sites in active promoters and forms multimeric, often sphere-like structures in response to perturbation of transcription elongation, mRNA splicing or inhibition of the proteasome. Multimerization is accompanied by a global change in the MYC interactome towards proteins involved in transcription termination and RNA processing. MYC multimers accumulate on chromatin immediately adjacent to stalled replication forks and surround FANCD2, ATR and BRCA1 proteins, which are located at stalled forks7,8. MYC multimerization is triggered in a HUWE16 and ubiquitylation-dependent manner. At active promoters, MYC multimers block antisense transcription and stabilize FANCD2 association with chromatin. This limits DNA double strand break formation during S-phase, suggesting that the multimerization of MYC enables tumour cells to proliferate under stressful conditions.


Assuntos
RNA Polimerases Dirigidas por DNA , Humanos , Cromatina/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Quebras de DNA de Cadeia Dupla , Fase S , Sítios de Ligação , RNA Mensageiro/biossíntese
7.
Mol Cell ; 77(6): 1322-1339.e11, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32006464

RESUMO

Deregulated expression of MYC induces a dependence on the NUAK1 kinase, but the molecular mechanisms underlying this dependence have not been fully clarified. Here, we show that NUAK1 is a predominantly nuclear protein that associates with a network of nuclear protein phosphatase 1 (PP1) interactors and that PNUTS, a nuclear regulatory subunit of PP1, is phosphorylated by NUAK1. Both NUAK1 and PNUTS associate with the splicing machinery. Inhibition of NUAK1 abolishes chromatin association of PNUTS, reduces spliceosome activity, and suppresses nascent RNA synthesis. Activation of MYC does not bypass the requirement for NUAK1 for spliceosome activity but significantly attenuates transcription inhibition. Consequently, NUAK1 inhibition in MYC-transformed cells induces global accumulation of RNAPII both at the pause site and at the first exon-intron boundary but does not increase mRNA synthesis. We suggest that NUAK1 inhibition in the presence of deregulated MYC traps non-productive RNAPII because of the absence of correctly assembled spliceosomes.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Spliceossomos/metabolismo , Transcrição Gênica , Animais , Núcleo Celular/genética , Cromatina/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Proteínas Quinases/genética , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Splicing de RNA , Proteínas Repressoras/genética , Spliceossomos/genética
8.
Mol Cell ; 74(4): 674-687.e11, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30928206

RESUMO

The MYC oncoprotein binds to promoter-proximal regions of virtually all transcribed genes and enhances RNA polymerase II (Pol II) function, but its precise mode of action is poorly understood. Using mass spectrometry of both MYC and Pol II complexes, we show here that MYC controls the assembly of Pol II with a small set of transcription elongation factors that includes SPT5, a subunit of the elongation factor DSIF. MYC directly binds SPT5, recruits SPT5 to promoters, and enables the CDK7-dependent transfer of SPT5 onto Pol II. Consistent with known functions of SPT5, MYC is required for fast and processive transcription elongation. Intriguingly, the high levels of MYC that are expressed in tumors sequester SPT5 into non-functional complexes, thereby decreasing the expression of growth-suppressive genes. Altogether, these results argue that MYC controls the productive assembly of processive Pol II elongation complexes and provide insight into how oncogenic levels of MYC permit uncontrolled cellular growth.


Assuntos
Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinases Ciclina-Dependentes/genética , Chaperonas de Histonas/genética , Humanos , Neoplasias/genética , Regiões Promotoras Genéticas , Quinase Ativadora de Quinase Dependente de Ciclina
9.
Nucleic Acids Res ; 52(7): e35, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38381903

RESUMO

Nucleoside analogues like 4-thiouridine (4sU) are used to metabolically label newly synthesized RNA. Chemical conversion of 4sU before sequencing induces T-to-C mismatches in reads sequenced from labelled RNA, allowing to obtain total and labelled RNA expression profiles from a single sequencing library. Cytotoxicity due to extended periods of labelling or high 4sU concentrations has been described, but the effects of extensive 4sU labelling on expression estimates from nucleotide conversion RNA-seq have not been studied. Here, we performed nucleotide conversion RNA-seq with escalating doses of 4sU with short-term labelling (1h) and over a progressive time course (up to 2h) in different cell lines. With high concentrations or at later time points, expression estimates were biased in an RNA half-life dependent manner. We show that bias arose by a combination of reduced mappability of reads carrying multiple conversions, and a global, unspecific underrepresentation of labelled RNA emerging during library preparation and potentially global reduction of RNA synthesis. We developed a computational tool to rescue unmappable reads, which performed favourably compared to previous read mappers, and a statistical method, which could fully remove remaining bias. All methods developed here are freely available as part of our GRAND-SLAM pipeline and grandR package.


Assuntos
RNA-Seq , Tiouridina , Tiouridina/metabolismo , Tiouridina/química , RNA-Seq/métodos , Humanos , RNA/genética , Análise de Sequência de RNA/métodos , Nucleotídeos/genética
10.
Nucleic Acids Res ; 52(6): 3050-3068, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38224452

RESUMO

RNA-binding proteins emerge as effectors of the DNA damage response (DDR). The multifunctional non-POU domain-containing octamer-binding protein NONO/p54nrb marks nuclear paraspeckles in unperturbed cells, but also undergoes re-localization to the nucleolus upon induction of DNA double-strand breaks (DSBs). However, NONO nucleolar re-localization is poorly understood. Here we show that the topoisomerase II inhibitor etoposide stimulates the production of RNA polymerase II-dependent, DNA damage-inducible antisense intergenic non-coding RNA (asincRNA) in human cancer cells. Such transcripts originate from distinct nucleolar intergenic spacer regions and form DNA-RNA hybrids to tether NONO to the nucleolus in an RNA recognition motif 1 domain-dependent manner. NONO occupancy at protein-coding gene promoters is reduced by etoposide, which attenuates pre-mRNA synthesis, enhances NONO binding to pre-mRNA transcripts and is accompanied by nucleolar detention of a subset of such transcripts. The depletion or mutation of NONO interferes with detention and prolongs DSB signalling. Together, we describe a nucleolar DDR pathway that shields NONO and aberrant transcripts from DSBs to promote DNA repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Etoposídeo/farmacologia , Precursores de RNA/metabolismo , Fatores de Transcrição/metabolismo , DNA , Proteínas de Ligação a RNA/metabolismo
11.
Nature ; 567(7749): 545-549, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30894746

RESUMO

MYC is an oncogenic transcription factor that binds globally to active promoters and promotes transcriptional elongation by RNA polymerase II (RNAPII)1,2. Deregulated expression of the paralogous protein MYCN drives the development of neuronal and neuroendocrine tumours and is often associated with a particularly poor prognosis3. Here we show that, similar to MYC, activation of MYCN in human neuroblastoma cells induces escape of RNAPII from promoters. If the release of RNAPII from transcriptional pause sites (pause release) fails, MYCN recruits BRCA1 to promoter-proximal regions. Recruitment of BRCA1 prevents MYCN-dependent accumulation of stalled RNAPII and enhances transcriptional activation by MYCN. Mechanistically, BRCA1 stabilizes mRNA decapping complexes and enables MYCN to suppress R-loop formation in promoter-proximal regions. Recruitment of BRCA1 requires the ubiquitin-specific protease USP11, which binds specifically to MYCN when MYCN is dephosphorylated at Thr58. USP11, BRCA1 and MYCN stabilize each other on chromatin, preventing proteasomal turnover of MYCN. Because BRCA1 is highly expressed in neuronal progenitor cells during early development4 and MYC is less efficient than MYCN in recruiting BRCA1, our findings indicate that a cell-lineage-specific stress response enables MYCN-driven tumours to cope with deregulated RNAPII function.


Assuntos
Proteína BRCA1/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Estabilidade Proteica , Tioléster Hidrolases/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197278

RESUMO

Evasion from drug-induced apoptosis is a crucial mechanism of cancer treatment resistance. The proapoptotic protein NOXA marks an aggressive pancreatic ductal adenocarcinoma (PDAC) subtype. To identify drugs that unleash the death-inducing potential of NOXA, we performed an unbiased drug screening experiment. In NOXA-deficient isogenic cellular models, we identified an inhibitor of the transcription factor heterodimer CBFß/RUNX1. By genetic gain and loss of function experiments, we validated that the mode of action depends on RUNX1 and NOXA. Of note is that RUNX1 expression is significantly higher in PDACs compared to normal pancreas. We show that pharmacological RUNX1 inhibition significantly blocks tumor growth in vivo and in primary patient-derived PDAC organoids. Through genome-wide analysis, we detected that RUNX1-loss reshapes the epigenetic landscape, which gains H3K27ac enrichment at the NOXA promoter. Our study demonstrates a previously unknown mechanism of NOXA-dependent cell death, which can be triggered pharmaceutically. Therefore, our data show a way to target a therapy-resistant PDAC, an unmet clinical need.


Assuntos
Apoptose/genética , Carcinoma Ductal Pancreático/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Expressão Gênica , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Mutações Sintéticas Letais , Carcinoma Ductal Pancreático/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Humanos , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas , Regulação para Cima
13.
Gut ; 73(9): 1509-1528, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38821858

RESUMO

OBJECTIVE: The hallmark oncogene MYC drives the progression of most tumours, but direct inhibition of MYC by a small-molecule drug has not reached clinical testing. MYC is a transcription factor that depends on several binding partners to function. We therefore explored the possibility of targeting MYC via its interactome in pancreatic ductal adenocarcinoma (PDAC). DESIGN: To identify the most suitable targets among all MYC binding partners, we constructed a targeted shRNA library and performed screens in cultured PDAC cells and tumours in mice. RESULTS: Unexpectedly, many MYC binding partners were found to be important for cultured PDAC cells but dispensable in vivo. However, some were also essential for tumours in their natural environment and, among these, the ATPases RUVBL1 and RUVBL2 ranked first. Degradation of RUVBL1 by the auxin-degron system led to the arrest of cultured PDAC cells but not untransformed cells and to complete tumour regression in mice, which was preceded by immune cell infiltration. Mechanistically, RUVBL1 was required for MYC to establish oncogenic and immunoevasive gene expression identifying the RUVBL1/2 complex as a druggable vulnerability in MYC-driven cancer. CONCLUSION: One implication of our study is that PDAC cell dependencies are strongly influenced by the environment, so genetic screens should be performed in vitro and in vivo. Moreover, the auxin-degron system can be applied in a PDAC model, allowing target validation in living mice. Finally, by revealing the nuclear functions of the RUVBL1/2 complex, our study presents a pharmaceutical strategy to render pancreatic cancers potentially susceptible to immunotherapy.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Carcinoma Ductal Pancreático , DNA Helicases , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-myc , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Camundongos , Humanos , DNA Helicases/genética , DNA Helicases/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Linhagem Celular Tumoral , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética
14.
Blood ; 139(8): 1184-1197, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33908607

RESUMO

Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired antimetabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is reprogramming gene expression in a metabolism-dependent manner. MondoA (also known as Myc-associated factor X-like protein X-interacting protein [MLXIP]), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets, we found that MondoA overexpression is associated with worse survival in pediatric common acute lymphoblastic leukemia (ALL; B-precursor ALL [B-ALL]). Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and RNA-interference approaches, we observed that MondoA depletion reduces the transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced pyruvate dehydrogenase activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Estresse Fisiológico , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
15.
Mol Cell ; 61(1): 54-67, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26687678

RESUMO

MYC is an unstable protein, and its turnover is controlled by the ubiquitin system. Ubiquitination enhances MYC-dependent transactivation, but the underlying mechanism remains unresolved. Here we show that MYC proteasomal turnover is dispensable for loading of RNA polymerase II (RNAPII). In contrast, MYC turnover is essential for recruitment of TRRAP, histone acetylation, and binding of BRD4 and P-TEFb to target promoters, leading to phosphorylation of RNAPII and transcriptional elongation. In the absence of histone acetylation and P-TEFb recruitment, MYC associates with the PAF1 complex (PAF1C) through a conserved domain in the MYC amino terminus ("MYC box I"). Depletion of the PAF1C subunit CDC73 enhances expression of MYC target genes, suggesting that the MYC/PAF1C complex can inhibit transcription. Because several ubiquitin ligases bind to MYC via the same domain ("MYC box II") that interacts with TRRAP, we propose that degradation of MYC limits the accumulation of MYC/PAF1C complexes during transcriptional activation.


Assuntos
Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Elongação da Transcrição Genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular , Proliferação de Células , Montagem e Desmontagem da Cromatina , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Complexos Multiproteicos , Mutação , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , Proteólise , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , RNA Polimerase II/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transfecção , Proteínas Supressoras de Tumor/genética
17.
Nat Chem Biol ; 16(11): 1179-1188, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989298

RESUMO

The mitotic kinase AURORA-A is essential for cell cycle progression and is considered a priority cancer target. Although the catalytic activity of AURORA-A is essential for its mitotic function, recent reports indicate an additional non-catalytic function, which is difficult to target by conventional small molecules. We therefore developed a series of chemical degraders (PROTACs) by connecting a clinical kinase inhibitor of AURORA-A to E3 ligase-binding molecules (for example, thalidomide). One degrader induced rapid, durable and highly specific degradation of AURORA-A. In addition, we found that the degrader complex was stabilized by cooperative binding between AURORA-A and CEREBLON. Degrader-mediated AURORA-A depletion caused an S-phase defect, which is not the cell cycle effect observed upon kinase inhibition, supporting an important non-catalytic function of AURORA-A during DNA replication. AURORA-A degradation induced rampant apoptosis in cancer cell lines and thus represents a versatile starting point for developing new therapeutics to counter AURORA-A function in cancer.


Assuntos
Antineoplásicos/química , Aurora Quinase A/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Proteólise/efeitos dos fármacos , Talidomida/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Aurora Quinase A/genética , Benzazepinas/química , Domínio Catalítico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Desenho de Fármacos , Feminino , Humanos , Masculino , Terapia de Alvo Molecular , Polietilenoglicóis/química , Ligação Proteica , Conformação Proteica
18.
EMBO J ; 36(13): 1854-1868, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28408437

RESUMO

Deregulated expression of MYC enhances glutamine utilization and renders cell survival dependent on glutamine, inducing "glutamine addiction". Surprisingly, colon cancer cells that express high levels of MYC due to WNT pathway mutations are not glutamine-addicted but undergo a reversible cell cycle arrest upon glutamine deprivation. We show here that glutamine deprivation suppresses translation of endogenous MYC via the 3'-UTR of the MYC mRNA, enabling escape from apoptosis. This regulation is mediated by glutamine-dependent changes in adenosine-nucleotide levels. Glutamine deprivation causes a global reduction in promoter association of RNA polymerase II (RNAPII) and slows transcriptional elongation. While activation of MYC restores binding of MYC and RNAPII function on most promoters, restoration of elongation is imperfect and activation of MYC in the absence of glutamine causes stalling of RNAPII on multiple genes, correlating with R-loop formation. Stalling of RNAPII and R-loop formation can cause DNA damage, arguing that the MYC 3'-UTR is critical for maintaining genome stability when ribonucleotide levels are low.


Assuntos
Regiões 3' não Traduzidas , Regulação Enzimológica da Expressão Gênica , Glutamina/metabolismo , Proteínas Proto-Oncogênicas c-myc/biossíntese , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Ribonucleotídeos/metabolismo , Linhagem Celular , Humanos , Proteínas Proto-Oncogênicas c-myc/genética
19.
Plant Cell ; 30(2): 495-509, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29348240

RESUMO

Sustaining energy homeostasis is of pivotal importance for all living organisms. In Arabidopsis thaliana, evolutionarily conserved SnRK1 kinases (Snf1-RELATED KINASE1) control metabolic adaptation during low energy stress. To unravel starvation-induced transcriptional mechanisms, we performed transcriptome studies of inducible knockdown lines and found that S1-basic leucine zipper transcription factors (S1-bZIPs) control a defined subset of genes downstream of SnRK1. For example, S1-bZIPs coordinate the expression of genes involved in branched-chain amino acid catabolism, which constitutes an alternative mitochondrial respiratory pathway that is crucial for plant survival during starvation. Molecular analyses defined S1-bZIPs as SnRK1-dependent regulators that directly control transcription via binding to G-box promoter elements. Moreover, SnRK1 triggers phosphorylation of group C-bZIPs and the formation of C/S1-heterodimers and, thus, the recruitment of SnRK1 directly to target promoters. Subsequently, the C/S1-bZIP-SnRK1 complex interacts with the histone acetylation machinery to remodel chromatin and facilitate transcription. Taken together, this work reveals molecular mechanisms underlying how energy deprivation is transduced to reprogram gene expression, leading to metabolic adaptation upon stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Redes e Vias Metabólicas , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Adaptação Fisiológica , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Escuridão , Metabolismo Energético , Perfilação da Expressão Gênica , Homeostase , Mitocôndrias/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/genética
20.
Nature ; 511(7510): 483-7, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25043018

RESUMO

In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response.


Assuntos
Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes myc/genética , Neoplasias/genética , Transcriptoma , Regulação para Cima/genética , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Elementos E-Box/genética , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/metabolismo , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA