Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Opin Biotechnol ; 23(5): 679-88, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22305712

RESUMO

The engineering of biological systems offers significant promise for advances in areas including health and medicine, chemical synthesis, energy production, and environmental sustainability. Realizing this potential requires tools that enable design of sophisticated genetic systems. The functional diversity of RNA makes it an attractive and versatile substrate for programming sensing, information processing, computation, and control functions. Recent advances in the design of synthetic RNA switches capable of detecting and responding to molecular and environmental signals enable dynamic modulation of gene expression through diverse mechanisms, including transcription, splicing, stability, RNA interference, and translation. Furthermore, implementation of these switches in genetic circuits highlights the potential for building synthetic cell systems targeted to applications in environmental remediation and next-generation therapeutics and diagnostics.


Assuntos
Regulação da Expressão Gênica/genética , Genes de Troca/genética , RNA/genética , RNA/metabolismo , Meio Ambiente , Recuperação e Remediação Ambiental , Redes Reguladoras de Genes/genética , Humanos , Medicina , Interferência de RNA , Splicing de RNA , Estabilidade de RNA/genética , Fatores de Tempo , Transcrição Gênica/genética
2.
Genetics ; 185(2): 513-22, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20382833

RESUMO

Saccharomyces cerevisiae can divide asymmetrically so that the mother and daughter cells have different fates. We show that the RNA-binding protein Khd1 regulates asymmetric expression of FLO11 to determine daughter cell fate during filamentous growth. Khd1 represses transcription of FLO11 indirectly through its regulation of ASH1 mRNA. Khd1 also represses FLO11 through a post-transcriptional mechanism independent of ASH1. Cross-linking immunoprecipitation (CLIP) coupled with high-throughput sequencing shows that Khd1 directly binds repetitive sequences in FLO11 mRNA. Khd1 inhibits translation through this interaction, establishing feed-forward repression of FLO11. This regulation enables changes in FLO11 expression between mother and daughter cells, which establishes the asymmetry required for the developmental transition between yeast form and filamentous growth.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Contagem de Células , Diferenciação Celular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Leveduras/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA