Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Biol Chem ; 299(10): 105227, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37673338

RESUMO

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) auxiliary subunits are specialized, nontransient binding partners of AMPARs that modulate AMPAR channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well-characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs), cornichon homologs (CNIHs), and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs (composed of GluA1-4 subunits) in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of WT and mutant AMPARs, presumably by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization, whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2, suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.


Assuntos
Ácido Glutâmico , Multimerização Proteica , Receptores de AMPA , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Domínios Proteicos , Receptores de AMPA/química , Receptores de AMPA/genética , Transdução de Sinais , Subunidades Proteicas/química , Subunidades Proteicas/genética , Células HEK293 , Humanos
2.
Pharmacol Rev ; 73(4): 298-487, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753794

RESUMO

Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.


Assuntos
Receptores de Glutamato , Receptores Ionotrópicos de Glutamato , Animais , Sistema Nervoso Central , Ácido Glutâmico , Humanos , Neurotransmissores , Receptores Ionotrópicos de Glutamato/genética
3.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30396997

RESUMO

NMDA receptors (NMDARs) are glutamate-gated ion channels that are key mediators of excitatory neurotransmission and synaptic plasticity throughout the central nervous system. They form massive heterotetrameric complexes endowed with unique allosteric capacity provided by eight extracellular clamshell-like domains arranged as two superimposed layers. Despite an increasing number of full-length NMDAR structures, how these domains cooperate in an intact receptor to control its activity remains poorly understood. Here, combining single-molecule and macroscopic electrophysiological recordings, cysteine biochemistry, and in silico analysis, we identify a rolling motion at a yet unexplored interface between the two constitute dimers in the agonist-binding domain (ABD) layer as a key structural determinant in NMDAR activation and allosteric modulation. This rotation acts as a gating switch that tunes channel opening depending on the conformation of the membrane-distal N-terminal domain (NTD) layer. Remarkably, receptors locked in a rolled state display "super-activity" and resistance to NTD-mediated allosteric modulators. Our work unveils how NMDAR domains move in a concerted manner to transduce long-range conformational changes between layers and command receptor channel activity.


Assuntos
Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação Alostérica , Animais , Simulação por Computador , Cisteína/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais , Imagem Individual de Molécula , Xenopus laevis
4.
J Neurosci ; 40(18): 3631-3645, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32245827

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that play critical roles in neuronal development and nervous system function. Here, we developed a model to study NMDARs in early development in zebrafish, by generating CRISPR-mediated lesions in the NMDAR genes, grin1a and grin1b, which encode the obligatory GluN1 subunits. While receptors containing grin1a or grin1b show high Ca2+ permeability, like their mammalian counterpart, grin1a is expressed earlier and more broadly in development than grin1b Both grin1a-/- and grin1b-/- zebrafish are viable. Unlike in rodents, where the grin1 knockout is embryonic lethal, grin1 double-mutant fish (grin1a-/-; grin1b-/-), which lack all NMDAR-mediated synaptic transmission, survive until ∼10 d dpf (days post fertilization), providing a unique opportunity to explore NMDAR function during development and in generating behaviors. Many behavioral defects in the grin1 double-mutant larvae, including abnormal evoked responses to light and acoustic stimuli, prey-capture deficits, and a failure to habituate to acoustic stimuli, are replicated by short-term treatment with the NMDAR antagonist MK-801, suggesting that they arise from acute effects of compromised NMDAR-mediated transmission. Other defects, however, such as periods of hyperactivity and alterations in place preference, are not phenocopied by MK-801, suggesting a developmental origin. Together, we have developed a unique model to study NMDARs in the developing vertebrate nervous system.SIGNIFICANCE STATEMENT Rapid communication between cells in the nervous system depends on ion channels that are directly activated by chemical neurotransmitters. One such ligand-gated ion channel, the NMDAR, impacts nearly all forms of nervous system function. It has been challenging, however, to study the prolonged absence of NMDARs in vertebrates, and hence their role in nervous system development, due to experimental limitations. Here, we demonstrate that zebrafish lacking all NMDAR transmission are viable through early development and are capable of a wide range of stereotypic behaviors. As such, this zebrafish model provides a unique opportunity to study the role of NMDAR in the development of the early vertebrate nervous system.


Assuntos
Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Estimulação Acústica/métodos , Animais , Animais Geneticamente Modificados , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Sistema Nervoso/efeitos dos fármacos , Estimulação Luminosa/métodos , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores
5.
J Physiol ; 599(2): 397-416, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32144935

RESUMO

NMDA receptors (NMDARs) are glutamate-gated ion channels that contribute to nearly all brain processes. Not surprisingly then, genetic variations in the genes encoding NMDAR subunits can be associated with neurodevelopmental, neurological and psychiatric disorders. These disease-associated variants (DAVs) present challenges, such as defining how DAV-induced alterations in receptor function contribute to disease progression and how to treat the affected individual clinically. As a starting point to overcome these challenges, we need to refine our understanding of the complexity of NMDAR structure function. In this regard, DAVs have expanded our knowledge of NMDARs because they do not just target well-known structure-function motifs, but rather give an unbiased view of structural elements that are important to the biology of NMDARs. Indeed, established NMDAR structure-function motifs have been validated by the appearance of disorders in patients where these motifs have been altered, and DAVs have identified novel structural features in NMDARs such as gating triads and hinges in the gating machinery. Still, the majority of DAVs remain unexplored and occur at sites in the protein with unidentified function or alter receptor properties in multiple and unanticipated ways. Detailed mechanistic and structural investigations are required of both established and novel motifs to develop a highly refined pathomechanistic model that accounts for the complex machinery that regulates NMDARs. Such a model would provide a template for rational drug design and a starting point for personalized medicine.


Assuntos
Ácido Glutâmico , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
6.
Hum Mutat ; 40(12): 2393-2413, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31429998

RESUMO

N-methyl-D-aspartate receptors (NMDARs) mediate slow excitatory postsynaptic transmission in the central nervous system, thereby exerting a critical role in neuronal development and brain function. Rare genetic variants in the GRIN genes encoding NMDAR subunits segregated with neurological disorders. Here, we summarize the clinical presentations for 18 patients harboring 12 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M2 re-entrant loop, a region that lines the pore and is intolerant to missense variation. These de novo variants were identified in children with a set of neurological and neuropsychiatric conditions. Evaluation of the receptor cell surface expression, pharmacological properties, and biophysical characteristics show that these variants can have modest changes in agonist potency, proton inhibition, and surface expression. However, voltage-dependent magnesium inhibition is significantly reduced in all variants. The NMDARs hosting a single copy of a mutant subunit showed a dominant reduction in magnesium inhibition for some variants. These variant NMDARs also show reduced calcium permeability and single-channel conductance, as well as altered open probability. The data suggest that M2 missense variants increase NMDAR charge transfer in addition to varied and complex influences on NMDAR functional properties, which may underlie the patients' phenotypes.


Assuntos
Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , Criança , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Fenótipo , Conformação Proteica , Receptores de N-Metil-D-Aspartato/química , Xenopus laevis
7.
J Neurophysiol ; 120(6): 3063-3076, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30303753

RESUMO

Parvalbumin-expressing (PV) GABAergic interneurons regulate local circuit dynamics. In terms of the excitation driving PV interneuron activity, the N-methyl-d-aspartate receptor (NMDAR)-mediated component onto PV interneurons tends to be smaller than that onto pyramidal neurons but makes a significant contribution to their physiology and development. In the visual cortex, PV interneurons mature during the critical period. We hypothesize that during the critical period, the NMDAR-mediated signaling and functional properties of glutamatergic synapses onto PV interneurons are developmentally regulated. We therefore compared the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and NMDAR-mediated synaptic responses before (postnatal days 15-20, P15-P20), during (P25-P40), and after (P50-P60) the visual critical period. AMPAR miniature excitatory postsynaptic currents (mEPSCs) showed a developmental decrease in frequency, whereas NMDAR mEPSCs were absent or showed extremely low frequencies throughout development. For evoked responses, we consistently saw a NMDAR-mediated component, suggesting pre- or postsynaptic differences between evoked and spontaneous neurotransmission. Evoked responses showed input-specific developmental changes. For intralaminar inputs, the NMDAR-mediated component significantly decreased with development. This resulted in adult intralaminar inputs almost exclusively mediated by AMPARs, suited for the computation of synaptic inputs with precise timing, and likely having NMDAR-independent forms of plasticity. In contrast, interlaminar inputs maintained a stable NMDAR-mediated component throughout development but had a shift in the AMPAR paired-pulse ratio from depression to facilitation. Adult interlaminar inputs with facilitating AMPAR responses and a substantial NMDAR component would favor temporal integration of synaptic responses and could be modulated by NMDAR-dependent forms of plasticity. NEW & NOTEWORTHY We show for the first time input-specific developmental changes in the N-methyl-d-aspartate receptor component and short-term plasticity of the excitatory drive onto layers 2/3 parvalbumin-expressing (PV) interneurons in the visual cortex during the critical period. These developmental changes would lead to functionally distinct adult intralaminar and interlaminar glutamatergic inputs that would engage PV interneuron-mediated inhibition differently.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Interneurônios/metabolismo , Potenciais Pós-Sinápticos em Miniatura , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Visual/metabolismo , Animais , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/genética , Parvalbuminas/metabolismo , Córtex Visual/citologia , Córtex Visual/fisiologia
8.
J Neurosci ; 36(9): 2617-22, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26937003

RESUMO

AMPA and NMDA receptors are glutamate-gated ion channels that mediate fast excitatory synaptic transmission throughout the nervous system. In the continual presence of glutamate, AMPA and NMDA receptors containing the GluN2A or GluN2B subunit enter into a nonconducting, desensitized state that can impact synaptic responses and glutamate-mediated excitotoxicity. The process of desensitization is dramatically different between subtypes, but the basis for these differences is unknown. We generated an extensive sequence alignment of ionotropic glutamate receptors (iGluRs) from diverse animal phyla and identified a highly conserved motif, which we termed the "hydrophobic box," located at the extracellular interface of transmembrane helices. A single position in the hydrophobic box differed between mammalian AMPA and NMDA receptors. Surprisingly, we find that an NMDAR-to-AMPAR exchange mutation at this position in the rat GluN2A or GluN2B subunit had a dramatic and highly specific effect on NMDAR desensitization, making it AMPAR-like. In contrast, a reverse exchange mutation in AMPARs had minimal effects on desensitization. These experiments highlight differences in desensitization between iGluR subtypes and the highly specific contribution of the GluN2 subunit to this process. SIGNIFICANCE STATEMENT: Rapid communication between cells in the nervous system depends on ion channels that are directly activated by neurotransmitter molecules. Here, we studied ionotropic glutamate receptors (iGluRs), which are ion channels activated by the neurotransmitter glutamate. By comparing the sequences of a vast number of iGluR proteins from diverse animal species, assisted by available structural information, we identified a highly conserved motif. We showed that a single amino acid difference in this motif between mammalian iGluR subtypes has dramatic effects on receptor function. These results have implications in both the evolution of synaptic function, as well as the role of iGluRs in health and disease.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Mutagênese/genética , Receptores Ionotrópicos de Glutamato/genética , Animais , Fenômenos Biofísicos , Estimulação Elétrica , Ácido Glutâmico/farmacologia , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Mutação/genética , Técnicas de Patch-Clamp , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Receptores Ionotrópicos de Glutamato/química , Receptores Ionotrópicos de Glutamato/classificação , Receptores Ionotrópicos de Glutamato/metabolismo , Alinhamento de Sequência , Transfecção
9.
J Biol Chem ; 291(12): 6595-606, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26839312

RESUMO

AMPA receptors (AMPARs) mediate fast excitatory neurotransmission in the central nervous system. Functional AMPARs are tetrameric complexes with a highly modular structure, consisting of four evolutionarily distinct structural domains: an amino-terminal domain (ATD), a ligand-binding domain (LBD), a channel-forming transmembrane domain (TMD), and a carboxyl-terminal domain (CTD). Here we show that the isolated TMD of the GluA1 AMPAR is fully capable of tetramerization. Additionally, removal of the extracellular domains from the receptor did not affect membrane topology or surface delivery. Furthermore, whereas the ATD and CTD contribute positively to tetramerization, the LBD presents a barrier to the process by reducing the stability of the receptor complex. These experiments pinpoint the TMD as the "tetramerization domain" for AMPARs, with other domains playing modulatory roles. They also raise intriguing questions about the evolution of iGluRs as well as the mechanisms regulating the biogenesis of AMPAR complexes.


Assuntos
Receptores de AMPA/química , Animais , Sítios de Ligação , Células HEK293 , Humanos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Transporte Proteico , Ratos , Receptores de AMPA/metabolismo
10.
J Physiol ; 593(1): 39-48, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25556786

RESUMO

AMPA receptors (AMPARs) play a critical role in excitatory glutamatergic neurotransmission. The number and subunit composition of AMPARs at synapses determines the dynamics of fast glutamatergic signalling. Functional AMPARs on the cell surface are tetramers. Thus tetrameric assembly of AMPARs represents a promising target for modulating AMPAR-mediated signalling in health and disease. Multiple structural domains within the receptor influence AMPAR assembly. In a proposed model for AMPAR assembly, the amino-terminal domain underlies the formation of a dimer pool. The transmembrane domain facilitates the formation and enhances the stability of the tetramer. The ligand-binding domain influences assembly through a process referred to as 'domain swapping'. We propose that this core AMPAR assembly process could be regulated by neuronal signals and speculate on possible mechanisms for such regulation.


Assuntos
Modelos Moleculares , Receptores de AMPA , Humanos , Multimerização Proteica , Estrutura Terciária de Proteína , Receptores de AMPA/química , Receptores de AMPA/metabolismo
11.
J Neurosci ; 33(31): 12739-50, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23904610

RESUMO

Fast-spiking parvalbumin (PV)-positive interneurons in layers 2/3 of the visual cortex regulate gain control and tuning of visual processing. Synapse-associated protein 97 (SAP97) belongs to a family of proteins that have been implicated in regulating glutamatergic synaptic transmission at pyramidal-to-pyramidal connections in the nervous system. For PV interneurons in mouse visual cortex, the expression of SAP97 is developmentally regulated, being expressed in almost all juvenile but only a fraction, ~40%, of adult PV interneurons. Using whole-cell patch-clamping, single-cell RT-PCR to assay endogenous expression of SAP97 and exogenous expression of SAP97, we investigated the functional significance of SAP97 in PV interneurons in layers 2/3 of the visual cortex. PV interneurons expressing SAP97, either endogenously or via exogenous expression, showed distinct membrane properties from those not expressing SAP97. This included an overall decrease in membrane excitability, as indexed by a decrease in membrane resistance and an increase in the stimulus threshold for the first action potential firing. Additionally, SAP97-expressing PV interneurons fired action potentials more frequently and, at moderate stimulus intensities, showed irregular or stuttering firing patterns. Furthermore, SAP97-expressing PV interneurons showed increased glutamatergic input and more extensive dendritic branching when compared with non-expressing PV interneurons. These differences in membrane and synaptic properties would significantly alter how PV interneurons expressing SAP97 compared with those not expressing SAP97 would function in local networks. Thus, our results indicate that the scaffolding protein SAP97 is a critical molecular factor regulating the input-output relationships of cortical PV interneurons.


Assuntos
Potenciais de Ação/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Interneurônios/fisiologia , Proteínas de Membrana/fisiologia , Parvalbuminas/metabolismo , Córtex Visual/citologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Proteína 1 Homóloga a Discs-Large , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Antagonistas GABAérgicos/farmacologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Camundongos Transgênicos , Parvalbuminas/genética , Picrotoxina/farmacologia , Lectinas de Plantas/genética , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Transdução Genética
12.
J Neurosci ; 33(23): 9840-5, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23739980

RESUMO

Most fast excitatory synaptic transmission in the nervous system is mediated by glutamate acting through ionotropic glutamate receptors (iGluRs). iGluRs (AMPA, kainate, and NMDA receptor subtypes) are tetrameric assemblies, formed as a dimer of dimers. Still, the mechanism underlying tetramerization--the necessary step for the formation of functional receptors that can be inserted into the plasma membrane--is unknown. All eukaryotic compared to prokaryotic iGluR subunits have an additional transmembrane segment, the M4 segment, which positions the physiologically critical C-terminal domain on the cytoplasmic side of the membrane. AMPA receptor (AMPAR) subunits lacking M4 do not express on the plasma membrane. Here, we show that these constructs are retained in the endoplasmic reticulum, the major cellular compartment mediating protein oligomerization. Using approaches to assay the native oligomeric state of AMPAR subunits, we find that subunits lacking M4 or containing single amino acid substitutions along an "interacting" face of the M4 helix that block surface expression no longer tetramerize in either homomeric or heteromeric assemblies. In contrast, subunit dimerization appears to be largely intact. These experiments define the M4 segment as a unique functional unit in AMPARs that is required for the critical dimer-to-tetramer transition.


Assuntos
Células Eucarióticas/química , Multimerização Proteica/fisiologia , Receptores de AMPA/química , Animais , Membrana Celular/química , Membrana Celular/fisiologia , Células Eucarióticas/fisiologia , Células HEK293 , Humanos , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/fisiologia , Ratos , Receptores de AMPA/fisiologia
13.
J Neurosci ; 33(29): 12052-66, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23864691

RESUMO

Glutamate-gated ion channels embedded within the neuronal membrane are the primary mediators of fast excitatory synaptic transmission in the CNS. The ion channel of these glutamate receptors contains a pore-lining transmembrane M3 helix surrounded by peripheral M1 and M4 helices. In the NMDA receptor subtype, opening of the ion channel pore, mediated by displacement of the M3 helices away from the central pore axis, occurs in a highly concerted fashion, but the associated temporal movements of the peripheral helices are unknown. To address the gating dynamics of the peripheral helices, we constrained the relative movements of the linkers that connect these helices to the ligand-binding domain using engineered cross-links, either within (intra-GluN1 or GluN2A) or between subunits. Constraining the peripheral linkers in any manner dramatically curtailed channel opening, highlighting the requirement for rearrangements of these peripheral structural elements for efficient gating to occur. However, the magnitude of this gating effect depended on the specific subunit being constrained, with the most dramatic effects occurring when the constraint was between subunits. Based on kinetic and thermodynamic analysis, our results suggest an asynchrony in the displacement of the peripheral linkers during the conformational and energetic changes leading to pore opening. Initially there are large-scale rearrangements occurring between the four subunits. Subsequently, rearrangements occur within individual subunits, mainly GluN2A, leading up to or in concert with pore opening. Thus, the conformational changes induced by agonist binding in NMDA receptors converge asynchronously to permit pore opening.


Assuntos
Ativação do Canal Iônico/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Sítios de Ligação , Células HEK293 , Humanos , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/química
14.
J Biol Chem ; 288(31): 22506-15, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23782697

RESUMO

The NMDA-sensitive glutamate receptor is a ligand-gated ion channel that mediates excitatory synaptic transmission in the nervous system. Extracellular zinc allosterically regulates the NMDA receptor by binding to the extracellular N-terminal domain, which inhibits channel gating. Phosphorylation of the intrinsically disordered intracellular C-terminal domain alleviates inhibition by extracellular zinc. The mechanism for this functional effect is largely unknown. Proline is a hallmark of intrinsic disorder, so we used proline mutagenesis to modulate disorder in the cytoplasmic domain. Proline depletion selectively uncoupled zinc inhibition with little effect on receptor biogenesis, surface trafficking, or ligand-activated gating. Proline depletion also reduced the affinity for a PDZ domain involved in synaptic trafficking and affected small molecule binding. To understand the origin of these phenomena, we used single molecule fluorescence and ensemble biophysical methods to characterize the structural effects of proline mutagenesis. Proline depletion did not eliminate intrinsic disorder, but the underlying conformational dynamics were changed. Thus, we altered the form of intrinsic disorder, which appears sufficient to affect the biological activity. These findings suggest that conformational dynamics within the intrinsically disordered cytoplasmic domain are important for the allosteric regulation of NMDA receptor gating.


Assuntos
Citoplasma/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Regulação Alostérica , Eletroforese em Gel de Poliacrilamida , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Ligação Proteica , Receptores de N-Metil-D-Aspartato/metabolismo , Solubilidade
15.
Methods Mol Biol ; 2799: 243-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727911

RESUMO

Zebrafish are a powerful system to study brain development and to dissect the activity of complex circuits. One advantage is that they display complex behaviors, including prey capture, learning, responses to photic and acoustic stimuli, and social interaction (Dreosti et al., Front Neural Circuits 9:39, 2015; Bruckner et al., PLoS Biol 20:e3001838, 2022; Zoodsma et al., Mol Autism 13:38, 2022) that can be probed to assess brain function. Many of these behaviors are easily assayed at early larval stages, offering a noninvasive and high-throughput readout of nervous system function. Additionally, larval zebrafish readily uptake small molecules dissolved in water making them ideal for behavioral-based drug screens. Together, larval zebrafish and their behavioral repertoire offer a means to rapidly dissect brain circuitry and can serve as a template for high-throughput small molecule screens.NMDA receptor subunits are highly conserved in zebrafish compared to mammals (Zoodsma et al., Mol Autism 13:38, 2022; Cox et al., Dev Dyn 234:756-766, 2005; Zoodsma et al., J Neurosci 40:3631-3645, 2020). High amino acid and domain structure homology between humans and zebrafish underlie conserved functional similarities. Here we describe a set of behavioral assays that are useful to study the NMDA receptor activity in brain function.


Assuntos
Comportamento Animal , Receptores de N-Metil-D-Aspartato , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Comportamento Animal/efeitos dos fármacos , Larva/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos
16.
Sci Rep ; 14(1): 3395, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336823

RESUMO

Developmental neurogenesis is a tightly regulated spatiotemporal process with its dysregulation implicated in neurodevelopmental disorders. NMDA receptors are glutamate-gated ion channels that are widely expressed in the early nervous system, yet their contribution to neurogenesis is poorly understood. Notably, a variety of mutations in genes encoding NMDA receptor subunits are associated with neurodevelopmental disorders. To rigorously define the role of NMDA receptors in developmental neurogenesis, we used a mutant zebrafish line (grin1-/-) that lacks all NMDA receptors yet survives to 10 days post-fertilization, offering the opportunity to study post-embryonic neurodevelopment in the absence of NMDA receptors. Focusing on the forebrain, we find that these fish have a progressive supernumerary neuron phenotype confined to the telencephalon at the end of embryonic neurogenesis, but which extends to all forebrain regions during postembryonic neurogenesis. This enhanced neuron population does not arise directly from increased numbers or mitotic activity of radial glia cells, the principal neural stem cells. Rather, it stems from a lack of timely maturation of transit-amplifying neuroblasts into post-mitotic neurons, as indicated by a decrease in expression of the ontogenetically-expressed chloride transporter, KCC2. Pharmacological blockade with MK-801 recapitulates the grin1-/- supernumerary neuron phenotype, indicating a requirement for ionotropic signaling. Thus, NMDA receptors are required for suppression of indirect, transit amplifying cell-driven neurogenesis by promoting maturational termination of mitosis. Loss of suppression results in neuronal overpopulation that can fundamentally change brain circuitry and may be a key factor in pathogenesis of neurodevelopmental disorders caused by NMDA receptor dysfunction.


Assuntos
Células-Tronco Neurais , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Telencéfalo/metabolismo
17.
J Neurophysiol ; 109(6): 1600-13, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274311

RESUMO

The input, processing, and output characteristics of inhibitory interneurons help shape information flow through layers 2/3 of the visual cortex. Parvalbumin (PV)-positive interneurons modulate and synchronize the gain and dynamic responsiveness of pyramidal neurons. To define the diversity of PV interneurons in layers 2/3 of the developing visual cortex, we characterized their passive and active membrane properties. Using Ward's and k-means multidimensional clustering, we identified four PV interneuron subgroups. The most notable difference between the subgroups was their firing patterns in response to moderate stimuli just above rheobase. Two subgroups showed regular and continuous firing at all stimulus intensities above rheobase. The difference between these two continuously firing subgroups was that one fired at much higher frequencies and transitioned into this high-frequency firing rate at or near rheobase. The two other subgroups showed irregular, stuttering firing patterns just above rheobase. Both of these subgroups typically transitioned to regular and continuous firing at intense stimulations, but one of these subgroups, the strongly stuttering subgroup, showed irregular firing across a wider range of stimulus intensities and firing frequencies. The four subgroups also differed in excitatory synaptic input, providing independent support for the classification of subgroups. The subgroups of PV interneurons identified here would respond differently to inputs of varying intensity and frequency, generating diverse patterns of PV inhibition in the developing neural circuit.


Assuntos
Potenciais de Ação , Interneurônios/classificação , Parvalbuminas/análise , Córtex Visual/citologia , Animais , Interneurônios/química , Interneurônios/fisiologia , Camundongos , Potenciais Pós-Sinápticos em Miniatura , Córtex Visual/fisiologia
18.
Pharmacol Rev ; 62(3): 405-96, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20716669

RESUMO

The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.


Assuntos
Canais Iônicos/fisiologia , Receptores de Glutamato/fisiologia , Expressão Gênica , Humanos , Canais Iônicos/química , Canais Iônicos/genética , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Receptores de Glutamato/química , Receptores de Glutamato/genética , Transmissão Sináptica , Terminologia como Assunto
19.
Neuropharmacology ; 240: 109703, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689262

RESUMO

The NMDA receptor (NMDAR) is a ubiquitously expressed glutamate-gated ion channel that plays key roles in brain development and function. Not surprisingly, a variety of disease-associated variants have been identified in genes encoding NMDAR subunits. A critical first step to assess whether these variants contribute to their associated disorder is to characterize their effect on receptor function. However, the complexity of NMDAR function makes this challenging, with many variants typically altering multiple functional properties. At synapses, NMDARs encode pre- and postsynaptic activity to carry a charge transfer that alters membrane excitability and a Ca2+ influx that has both short- and long-term signaling actions. Here, we characterized epilepsy-associated variants in GluN1 and GluN2A subunits with various phenotypic severity in HEK293 cells. To capture the complexity of NMDAR gating, we applied 10 glutamate pulses at 10 Hz to derive a charge integral. This assay is advantageous since it incorporates multiple gating parameters - activation, deactivation, and desensitization - into a single value. We then integrated this gating parameter with Mg2+ block and Ca2+ influx using fractional Ca2+ currents to generate indices of charge transfer and Ca2+ transfer over wide voltage ranges. This approach yields consolidated parameters that can be used as a reference to normalize channel block and allosteric modulation to better define potential patient treatment. This is especially true for variants in the transmembrane domain that affect not only receptor gating but also often Mg2+ block and Ca2+ permeation.

20.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798164

RESUMO

AMPA receptor (AMPAR) auxiliary subunits are specialized, non-transient binding partners of AMPARs that modulate their ion channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs) and cornichon homologs (CNIHs) and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of wild type and mutant AMPARs, possibly by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2 suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA