Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 165, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664627

RESUMO

BACKGROUND: The annotation of protein sequences in public databases has long posed a challenge in molecular biology. This issue is particularly acute for viral proteins, which demonstrate limited homology to known proteins when using alignment, k-mer, or profile-based homology search approaches. A novel methodology employing Large Language Models (LLMs) addresses this methodological challenge by annotating protein sequences based on embeddings. RESULTS: Central to our contribution is the soft alignment algorithm, drawing from traditional protein alignment but leveraging embedding similarity at the amino acid level to bypass the need for conventional scoring matrices. This method not only surpasses pooled embedding-based models in efficiency but also in interpretability, enabling users to easily trace homologous amino acids and delve deeper into the alignments. Far from being a black box, our approach provides transparent, BLAST-like alignment visualizations, combining traditional biological research with AI advancements to elevate protein annotation through embedding-based analysis while ensuring interpretability. Tests using the Virus Orthologous Groups and ViralZone protein databases indicated that the novel soft alignment approach recognized and annotated sequences that both blastp and pooling-based methods, which are commonly used for sequence annotation, failed to detect. CONCLUSION: The embeddings approach shows the great potential of LLMs for enhancing protein sequence annotation, especially in viral genomics. These findings present a promising avenue for more efficient and accurate protein function inference in molecular biology.


Assuntos
Algoritmos , Anotação de Sequência Molecular , Alinhamento de Sequência , Anotação de Sequência Molecular/métodos , Alinhamento de Sequência/métodos , Proteínas Virais/genética , Proteínas Virais/química , Genes Virais , Bases de Dados de Proteínas , Biologia Computacional/métodos , Sequência de Aminoácidos
2.
Proc Natl Acad Sci U S A ; 111(44): 15786-91, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25313075

RESUMO

Virioplankton play a crucial role in aquatic ecosystems as top-down regulators of bacterial populations and agents of horizontal gene transfer and nutrient cycling. However, the biology and ecology of virioplankton populations in the environment remain poorly understood. Ribonucleotide reductases (RNRs) are ancient enzymes that reduce ribonucleotides to deoxyribonucleotides and thus prime DNA synthesis. Composed of three classes according to O2 reactivity, RNRs can be predictive of the physiological conditions surrounding DNA synthesis. RNRs are universal among cellular life, common within viral genomes and virioplankton shotgun metagenomes (viromes), and estimated to occur within >90% of the dsDNA virioplankton sampled in this study. RNRs occur across diverse viral groups, including all three morphological families of tailed phages, making these genes attractive for studies of viral diversity. Differing patterns in virioplankton diversity were clear from RNRs sampled across a broad oceanic transect. The most abundant RNRs belonged to novel lineages of podoviruses infecting α-proteobacteria, a bacterial class critical to oceanic carbon cycling. RNR class was predictive of phage morphology among cyanophages and RNR distribution frequencies among cyanophages were largely consistent with the predictions of the "kill the winner-cost of resistance" model. RNRs were also identified for the first time to our knowledge within ssDNA viromes. These data indicate that RNR polymorphism provides a means of connecting the biological and ecological features of virioplankton populations.


Assuntos
Organismos Aquáticos/genética , Vírus de DNA/genética , Genoma Viral , Metagenoma , Ribonucleotídeo Redutases/genética , Proteínas Virais/genética , Sequência de Bases , Biodiversidade , DNA de Cadeia Simples/genética , DNA Viral/genética , Dados de Sequência Molecular
3.
Proc Natl Acad Sci U S A ; 110(26): 10800-5, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754393

RESUMO

Large dsDNA viruses are involved in the population control of many globally distributed species of eukaryotic phytoplankton and have a prominent role in bloom termination. The genus Phaeocystis (Haptophyta, Prymnesiophyceae) includes several high-biomass-forming phytoplankton species, such as Phaeocystis globosa, the blooms of which occur mostly in the coastal zone of the North Atlantic and the North Sea. Here, we report the 459,984-bp-long genome sequence of P. globosa virus strain PgV-16T, encoding 434 proteins and eight tRNAs and, thus, the largest fully sequenced genome to date among viruses infecting algae. Surprisingly, PgV-16T exhibits no phylogenetic affinity with other viruses infecting microalgae (e.g., phycodnaviruses), including those infecting Emiliania huxleyi, another ubiquitous bloom-forming haptophyte. Rather, PgV-16T belongs to an emerging clade (the Megaviridae) clustering the viruses endowed with the largest known genomes, including Megavirus, Mimivirus (both infecting acanthamoeba), and a virus infecting the marine microflagellate grazer Cafeteria roenbergensis. Seventy-five percent of the best matches of PgV-16T-predicted proteins correspond to two viruses [Organic Lake phycodnavirus (OLPV)1 and OLPV2] from a hypersaline lake in Antarctica (Organic Lake), the hosts of which are unknown. As for OLPVs and other Megaviridae, the PgV-16T sequence data revealed the presence of a virophage-like genome. However, no virophage particle was detected in infected P. globosa cultures. The presence of many genes found only in Megaviridae in its genome and the presence of an associated virophage strongly suggest that PgV-16T shares a common ancestry with the largest known dsDNA viruses, the host range of which already encompasses the earliest diverging branches of domain Eukarya.


Assuntos
Genoma Viral , Haptófitas/virologia , Phycodnaviridae/genética , Mapeamento Cromossômico , Duplicação Gênica , Haptófitas/ultraestrutura , Dados de Sequência Molecular , Phycodnaviridae/classificação , Phycodnaviridae/ultraestrutura , Filogenia , Fitoplâncton/ultraestrutura , Fitoplâncton/virologia , Proteoma , Retroelementos , Vírus Satélites/genética , Proteínas Virais/genética
4.
Proc Natl Acad Sci U S A ; 108(28): 11506-11, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709214

RESUMO

The Chesapeake Bay, a seasonally variable temperate estuary, provides a natural laboratory for examining the fluctuations and impacts of viral lysis on aquatic microorganisms. Viral abundance (VA) and viral production (VP) were monitored in the Chesapeake Bay over 4 1/2 annual cycles, producing a unique, long-term, interannual study of virioplankton production. High and dynamic VP rates, averaging 7.9 × 10(6) viruses per mL per h, indicate that viral lysis impacts a significant fraction of microorganisms in the Chesapeake. Viral-mediated bacterial mortality, VA, VP, and organic carbon release all displayed similar interannual and seasonal trends with higher values in 2003 and 2006 than in 2004 and 2005 and peaks in early spring and summer. Surprisingly, higher rates of viral lysis occurred in winter, resulting in a magnified effect of viral lysis on bacterioplankton during times of reduced productivity. Viral lysis directly impacted the organic carbon pool, contributing on average 76 µg of C per L per d, an amount capable of sustaining ∼55% of Chesapeake Bay bacterial production. The observed repeating interannual patterns of VP and lysis are likely interlinked with seasonal cycles of host abundance and diversity, which are in turn driven by annual cycles in environmental conditions, emphasizing the complex interplay of seasonality and microbial ecology in the Chesapeake Bay.


Assuntos
Ecossistema , Plâncton/virologia , Bactérias/virologia , Biodiversidade , Ciclo do Carbono , Delaware , Água Doce/microbiologia , Água Doce/virologia , Estações do Ano , Água do Mar/microbiologia , Água do Mar/virologia
5.
J Virol ; 86(22): 12161-75, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22933275

RESUMO

Deep sequencing of untreated sewage provides an opportunity to monitor enteric infections in large populations and for high-throughput viral discovery. A metagenomics analysis of purified viral particles in untreated sewage from the United States (San Francisco, CA), Nigeria (Maiduguri), Thailand (Bangkok), and Nepal (Kathmandu) revealed sequences related to 29 eukaryotic viral families infecting vertebrates, invertebrates, and plants (BLASTx E score, <10(-4)), including known pathogens (>90% protein identities) in numerous viral families infecting humans (Adenoviridae, Astroviridae, Caliciviridae, Hepeviridae, Parvoviridae, Picornaviridae, Picobirnaviridae, and Reoviridae), plants (Alphaflexiviridae, Betaflexiviridae, Partitiviridae, Sobemovirus, Secoviridae, Tombusviridae, Tymoviridae, Virgaviridae), and insects (Dicistroviridae, Nodaviridae, and Parvoviridae). The full and partial genomes of a novel kobuvirus, salivirus, and sapovirus are described. A novel astrovirus (casa astrovirus) basal to those infecting mammals and birds, potentially representing a third astrovirus genus, was partially characterized. Potential new genera and families of viruses distantly related to members of the single-stranded RNA picorna-like virus superfamily were genetically characterized and named Picalivirus, Secalivirus, Hepelivirus, Nedicistrovirus, Cadicistrovirus, and Niflavirus. Phylogenetic analysis placed these highly divergent genomes near the root of the picorna-like virus superfamily, with possible vertebrate, plant, or arthropod hosts inferred from nucleotide composition analysis. Circular DNA genomes distantly related to the plant-infecting Geminiviridae family were named Baminivirus, Nimivirus, and Niminivirus. These results highlight the utility of analyzing sewage to monitor shedding of viral pathogens and the high viral diversity found in this common pollutant and provide genetic information to facilitate future studies of these newly characterized viruses.


Assuntos
Vírus de DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus de RNA/genética , Esgotos/virologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Biologia Computacional/métodos , Sequência Conservada , DNA Circular/metabolismo , Variação Genética , Genoma Viral , Humanos , Funções Verossimilhança , Dados de Sequência Molecular , Nepal , Nigéria , Nucleotídeos/genética , Filogenia , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos , Tailândia , Estados Unidos , Virologia/métodos
6.
Appl Environ Microbiol ; 79(18): 5450-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23793630

RESUMO

Viruses are the most abundant and diverse biological entities within soils, yet their ecological impact is largely unknown. Defining how soil viral communities change with perturbation or across environments will contribute to understanding the larger ecological significance of soil viruses. A new approach to examining the composition of soil viral communities based on random PCR amplification of polymorphic DNA (RAPD-PCR) was developed. A key methodological improvement was the use of viral metagenomic sequence data for the design of RAPD-PCR primers. This metagenomically informed approach to primer design enabled the optimization of RAPD-PCR sensitivity for examining changes in soil viral communities. Initial application of RAPD-PCR viral fingerprinting to soil viral communities demonstrated that the composition of autochthonous soil viral assemblages noticeably changed over a distance of meters along a transect of Antarctic soils and across soils subjected to different land uses. For Antarctic soils, viral assemblages segregated upslope from the edge of dry valley lakes. In the case of temperate soils at the Kellogg Biological Station, viral communities clustered according to land use treatment. In both environments, soil viral communities changed along with environmental factors known to shape the composition of bacterial host communities. Overall, this work demonstrates that RAPD-PCR fingerprinting is an inexpensive, high-throughput means for addressing first-order questions of viral community dynamics within environmental samples and thus fills a methodological gap between narrow single-gene approaches and comprehensive shotgun metagenomic sequencing for the analysis of viral community diversity.


Assuntos
Biodiversidade , Impressões Digitais de DNA/métodos , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Microbiologia do Solo , Virologia/métodos , Vírus/classificação , Vírus/isolamento & purificação , Custos e Análise de Custo , Impressões Digitais de DNA/economia , Ensaios de Triagem em Larga Escala/economia , Ensaios de Triagem em Larga Escala/métodos , Técnica de Amplificação ao Acaso de DNA Polimórfico/economia , Virologia/economia , Vírus/genética
7.
mBio ; 14(2): e0029523, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017542

RESUMO

The ability of Bradyrhizobium spp. to nodulate and fix atmospheric nitrogen in soybean root nodules is critical to meeting humanity's nutritional needs. The intricacies of soybean bradyrhizobia-plant interactions have been studied extensively; however, bradyrhizobial ecology as influenced by phages has received somewhat less attention, even though these interactions may significantly impact soybean yield. In batch culture, four soybean bradyrhizobia strains, Bradyrhizobium japonicum S06B (S06B-Bj), B. japonicum S10J (S10J-Bj), Bradyrhizobium diazoefficiens USDA 122 (USDA 122-Bd), and Bradyrhizobium elkanii USDA 76T (USDA 76-Be), spontaneously (without apparent exogenous chemical or physical induction) produced tailed phages throughout the growth cycle; for three strains, phage concentrations exceeded cell numbers by ~3-fold after 48 h of incubation. Phage terminase large-subunit protein phylogeny revealed possible differences in phage packaging and replication mechanisms. Bioinformatic analyses predicted multiple prophage regions within each soybean bradyrhizobia genome, preventing accurate identification of spontaneously produced prophage (SPP) genomes. A DNA sequencing and mapping approach accurately delineated the boundaries of four SPP genomes within three of the soybean bradyrhizobia chromosomes and suggested that the SPPs were capable of transduction. In addition to the phages, S06B-Bj and USDA 76-Be contained three to four times more insertion sequences (IS) and large, conjugable, broad host range plasmids, both of which are known drivers of horizontal gene transfer (HGT) in soybean bradyrhizobia. These factors indicate that SPP along with IS and plasmids participate in HGT, drive bradyrhizobia evolution, and play an outsized role in bradyrhizobia ecology. IMPORTANCE Previous studies have shown that IS and plasmids mediate HGT of symbiotic nodulation (nod) genes in soybean bradyrhizobia; however, these events require close cell-to-cell contact, which could be limited in soil environments. Bacteriophage-assisted gene transduction through spontaneously produced prophages provides a stable means of HGT not limited by the constraints of proximal cell-to-cell contact. These phage-mediated HGT events may shape soybean bradyrhizobia population ecology, with concomitant impacts on soybean agriculture.


Assuntos
Bacteriófagos , Bradyrhizobium , Glycine max , Bacteriófagos/genética , Bradyrhizobium/genética , Sequência de Bases , Filogenia , Simbiose
8.
ISME Commun ; 3(1): 108, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789093

RESUMO

Through infection and lysis of their coexisting bacterial hosts, viruses impact the biogeochemical cycles sustaining globally significant pelagic oceanic ecosystems. Currently, little is known of the ecological interactions between lytic viruses and their bacterial hosts underlying these biogeochemical impacts at ecosystem scales. This study focused on populations of lytic viruses carrying the B12-dependent Class II monomeric ribonucleotide reductase (RNR) gene, ribonucleotide-triphosphate reductase (Class II RTPR), documenting seasonal changes in pelagic virioplankton and bacterioplankton using amplicon sequences of Class II RTPR and the 16S rRNA gene, respectively. Amplicon sequence libraries were analyzed using compositional data analysis tools that account for the compositional nature of these data. Both virio- and bacterioplankton communities responded to environmental changes typically seen across seasonal cycles as well as shorter term upwelling-downwelling events. Defining Class II RTPR-carrying viral populations according to major phylogenetic clades proved a more robust means of exploring virioplankton ecology than operational taxonomic units defined by percent sequence homology. Virioplankton Class II RTPR populations showed positive associations with a broad phylogenetic diversity of bacterioplankton including dominant taxa within pelagic oceanic ecosystems such as Prochlorococcus and SAR11. Temporal changes in Class II RTPR virioplankton, occurring as both free viruses and within infected cells, indicated possible viral-host pairs undergoing sustained infection and lysis cycles throughout the seasonal study. Phylogenetic relationships inferred from Class II RTPR sequences mirrored ecological patterns in virio- and bacterioplankton populations demonstrating possible genome to phenome associations for an essential viral replication gene.

9.
Appl Environ Microbiol ; 78(24): 8773-83, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23064328

RESUMO

Viral production estimates show that virioplankton communities turn over rapidly in aquatic ecosystems. Thus, it is likely that the genetic identity of viral populations comprising the virioplankton also change over temporal and spatial scales, reflecting shifts in viral-host interactions. However, there are few approaches that can provide data on the genotypic identity of viral populations at low cost and with the sample throughput necessary to assess dynamic changes in the virioplankton. This study examined two of these approaches-T4-like major capsid protein (g23) gene polymorphism and randomly amplified polymorphic DNA-PCR (RAPD-PCR) fingerprinting-to ask how well each technique could track differences in virioplankton populations over time and geographic location. Seasonal changes in overall virioplankton composition were apparent from pulsed-field gel electrophoresis (PFGE) analysis. T4-like phages containing similar g23 proteins were found within both small- and large-genome populations, including populations from different geographic locations and times. The surprising occurrence of T4-like g23 within small genomic groups (23 to 64 kb) indicated that the genome size range of T4-like phages may be broader than previously believed. In contrast, RAPD-PCR fingerprinting detected high genotypic similarity within PFGE bands from the same location, time, and genome size class without the requirement for DNA sequencing. Unlike g23 polymorphism, RAPD-PCR fingerprints showed a greater temporal than geographic variation. Thus, while polymorphism in a viral signature gene, such as g23, can be a powerful tool for inferring evolutionary relationships, the degree to which this approach can capture fine-scale variability within virioplankton populations is less clear.


Assuntos
Biota , Metagenômica/métodos , Vírus/classificação , Vírus/genética , Microbiologia da Água , DNA Viral/química , DNA Viral/genética , Dados de Sequência Molecular , Polimorfismo Genético , Análise de Sequência de DNA
10.
Front Microbiol ; 13: 858366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531281

RESUMO

Viruses are the most abundant and diverse biological entities on the planet and constitute a significant proportion of Earth's genetic diversity. Most of this diversity is not represented by isolated viral-host systems and has only been observed through sequencing of viral metagenomes (viromes) from environmental samples. Viromes provide snapshots of viral genetic potential, and a wealth of information on viral community ecology. These data also provide opportunities for exploring the biochemistry of novel viral enzymes. The in vitro biochemical characteristics of novel viral DNA polymerases were explored, testing hypothesized differences in polymerase biochemistry according to protein sequence phylogeny. Forty-eight viral DNA Polymerase I (PolA) proteins from estuarine viromes, hot spring metagenomes, and reference viruses, encompassing a broad representation of currently known diversity, were synthesized, expressed, and purified. Novel functionality was shown in multiple PolAs. Intriguingly, some of the estuarine viral polymerases demonstrated moderate to strong innate DNA strand displacement activity at high enzyme concentration. Strand-displacing polymerases have important technological applications where isothermal reactions are desirable. Bioinformatic investigation of genes neighboring these strand displacing polymerases found associations with SNF2 helicase-associated proteins. The specific function of SNF2 family enzymes is unknown for prokaryotes and viruses. In eukaryotes, SNF2 enzymes have chromatin remodeling functions but do not separate nucleic acid strands. This suggests the strand separation function may be fulfilled by the DNA polymerase for viruses carrying SNF2 helicase-associated proteins. Biochemical data elucidated from this study expands understanding of the biology and ecological behavior of unknown viruses. Moreover, given the numerous biotechnological applications of viral DNA polymerases, novel viral polymerases discovered within viromes may be a rich source of biological material for further in vitro DNA amplification advancements.

11.
Sci Total Environ ; 830: 154619, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35306079

RESUMO

Wastewater surveillance has been a useful tool complementing clinical testing during the COVID-19 pandemic. However, transitioning surveillance approaches to small populations, such as dormitories and assisted living facilities poses challenges including difficulties with sample collection and processing. Recently, the need for reliable and timely data has coincided with the need for precise local forecasting of the trajectory of COVID-19. This study compared wastewater and clinical data from the University of Delaware (Fall 2020 and Spring 2021 semesters), and evaluated wastewater collection practices for enhanced virus detection sensitivity. Fecal shedding of SARS-CoV-2 is known to occur in infected individuals. However, shedding concentrations and duration has been shown to vary. Therefore, three shedding periods (14, 21, and 30 days) were presumed and included for analysis of wastewater data. SARS-CoV-2 levels detected in wastewater correlated with clinical virus detection when a positive clinical test result was preceded by fecal shedding of 21 days (p< 0.05) and 30 days (p < 0.05), but not with new cases (p = 0.09) or 14 days of shedding (p = 0.17). Discretely collected wastewater samples were compared with 24-hour composite samples collected at the same site. The discrete samples (n = 99) were composited examining the influence of sampling duration and time of day on SARS-CoV-2 detection. SARS-CoV-2 detection varied among dormitory complexes and sampling durations of 3-hour, 12-hour, and 24-hour (controls). Collection times frequently showing high detection values were between the hours of 03:00 to 05:00 and 23:00 to 08:00. In each of these times of day 33% of samples (3/9) were significantly higher (p < 0.05) than the control sample. The remainder (6/9) of the collection times (3-hour and 12-hour) were not different (p > 0.05) from the control. This study provides additional framework for continued methodology development for microbiological wastewater surveillance as the COVID-19 pandemic progresses and in preparation for future epidemiological efforts.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Pandemias , Estudantes , Universidades , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
12.
Nat Rev Microbiol ; 20(2): 83-94, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34522049

RESUMO

Understanding how phenotypes emerge from genotypes is a foundational goal in biology. As challenging as this task is when considering cellular life, it is further complicated in the case of viruses. During replication, a virus as a discrete entity (the virion) disappears and manifests itself as a metabolic amalgam between the virus and the host (the virocell). Identifying traits that unambiguously constitute a virus's phenotype is straightforward for the virion, less so for the virocell. Here, we present a framework for categorizing virus phenotypes that encompasses both virion and virocell stages and considers functional and performance traits of viruses in the context of fitness. Such an integrated view of virus phenotype is necessary for comprehensive interpretation of viral genome sequences and will advance our understanding of viral evolution and ecology.


Assuntos
Genoma Viral , Fenótipo , Vírus/classificação , Vírus/genética , Genótipo , Humanos , Vírion/genética , Replicação Viral/genética
13.
Appl Environ Microbiol ; 77(21): 7459-68, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21821760

RESUMO

Despite the increasing knowledge of Synechococcus spp. and their co-occurring cyanophages in oceanic and coastal water, little is known about their abundance, distribution, and interactions in the Chesapeake Bay estuarine ecosystem. A 5-year interannual survey shows that Synechococcus spp. and their phages are persistent and abundant members of Chesapeake Bay microbial communities. Synechococcus blooms (106 cells ml⁻¹) were often observed in summer throughout the Bay, contributing 20 to 40% of total phytoplankton chlorophyll a. The distribution of phycoerythrin-containing (PE-rich) Synechococcus cells appeared to mostly correlate with the salinity gradient, with higher abundances at higher salinities. Cyanophages infectious to Synechococcus were also abundant (up to 6 × 105 viruses ml⁻¹ by the most probable number assay) during summer months in the Bay. The covariation in abundance of Synechococcus spp. and cyanophages was evident, although the latitude of observed positive correlation varied in different years, mirroring the changing environmental conditions and therefore the host-virus interactions. The impacts of cyanophages on host Synechococcus populations also varied spatially and temporally. Higher phage-related Synechococcus mortality was observed in drought years. Virus-mediated host mortality and subsequent liberation of dissolved organic matter (DOM) may substantially influence oceanic biogeochemical processing through the microbial loop as well as the microbial carbon pump. These observations emphasize the influence of environmental gradients on natural Synechococcus spp. and their phage population dynamics in the estuarine ecosystem.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Água do Mar/microbiologia , Água do Mar/virologia , Synechococcus/crescimento & desenvolvimento , Synechococcus/virologia , Carga Bacteriana , Maryland , Estações do Ano , Carga Viral
14.
Appl Environ Microbiol ; 77(22): 8071-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21948828

RESUMO

Construction of DNA fragment libraries for next-generation sequencing can prove challenging, especially for samples with low DNA yield. Protocols devised to circumvent the problems associated with low starting quantities of DNA can result in amplification biases that skew the distribution of genomes in metagenomic data. Moreover, sample throughput can be slow, as current library construction techniques are time-consuming. This study evaluated Nextera, a new transposon-based method that is designed for quick production of DNA fragment libraries from a small quantity of DNA. The sequence read distribution across nine phage genomes in a mock viral assemblage met predictions for six of the least-abundant phages; however, the rank order of the most abundant phages differed slightly from predictions. De novo genome assemblies from Nextera libraries provided long contigs spanning over half of the phage genome; in four cases where full-length genome sequences were available for comparison, consensus sequences were found to match over 99% of the genome with near-perfect identity. Analysis of areas of low and high sequence coverage within phage genomes indicated that GC content may influence coverage of sequences from Nextera libraries. Comparisons of phage genomes prepared using both Nextera and a standard 454 FLX Titanium library preparation protocol suggested that the coverage biases according to GC content observed within the Nextera libraries were largely attributable to bias in the Nextera protocol rather than to the 454 sequencing technology. Nevertheless, given suitable sequence coverage, the Nextera protocol produced high-quality data for genomic studies. For metagenomics analyses, effects of GC amplification bias would need to be considered; however, the library preparation standardization that Nextera provides should benefit comparative metagenomic analyses.


Assuntos
DNA/metabolismo , Biblioteca Gênica , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Transposases/metabolismo , Bacteriófagos/genética , Genoma Viral
15.
Methods Protoc ; 4(2)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065842

RESUMO

The COVID-19 pandemic is a global crisis and continues to impact communities as the disease spreads. Clinical testing alone provides a snapshot of infected individuals but is costly and difficult to perform logistically across whole populations. The virus which causes COVID-19, SARS-CoV-2, is shed in human feces and urine and can be detected in human waste. SARS-CoV-2 can be shed in high concentrations (>107 genomic copies/mL) due to its ability to replicate in the gastrointestinal tract of humans through attachment to the angiotensin-converting enzyme 2 (ACE-2) receptors there. Monitoring wastewater for SARS-CoV-2, alongside clinical testing, can more accurately represent the spread of disease within a community. This protocol describes a reliable and efficacious method to recover SARS-CoV-2 in wastewater, quantify genomic RNA levels, and evaluate concentration fluctuations over time. Using this protocol, viral levels as low as 10 genomic copies/mL were successfully detected from 30 mL of wastewater in more than seven-hundred samples collected between August 2020 and March 2021. Through the adaptation of traditional enteric virus methods used in food safety research, targets have been reliably detected with no inhibition of detection (RT-qPCR) observed in any sample processed. This protocol is currently used for surveillance of wastewater systems across New Castle County, Delaware.

16.
Sci Rep ; 11(1): 1629, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452291

RESUMO

We investigated the nascent application and efficacy of sampling and sequencing environmental DNA (eDNA) in terrestrial environments using rainwater that filters through the forest canopy and understory vegetation (i.e., throughfall). We demonstrate the utility and potential of this method for measuring microbial communities and forest biodiversity. We collected pure rainwater (open sky) and throughfall, successfully extracted DNA, and generated over 5000 unique amplicon sequence variants. We found that several taxa including Mycoplasma sp., Spirosoma sp., Roseomonas sp., and Lactococcus sp. were present only in throughfall samples. Spiroplasma sp., Methylobacterium sp., Massilia sp., Pantoea sp., and Sphingomonas sp. were found in both types of samples, but more abundantly in throughfall than in rainwater. Throughfall samples contained Gammaproteobacteria that have been previously found to be plant-associated, and may contribute to important functional roles. We illustrate how this novel method can be used for measuring microbial biodiversity in forest ecosystems, foreshadowing the utility for quantifying both prokaryotic and eukaryotic lifeforms. Leveraging these methods will enhance our ability to detect extant species, describe new species, and improve our overall understanding of ecological community dynamics in forest ecosystems.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/análise , Florestas , Biodiversidade , Análise por Conglomerados , Cytophagaceae/genética , Cytophagaceae/isolamento & purificação , Água Doce/microbiologia , Lactococcus/genética , Lactococcus/isolamento & purificação , Mycoplasma/genética , Mycoplasma/isolamento & purificação , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo
17.
Appl Environ Microbiol ; 76(8): 2673-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20154108

RESUMO

The viral metagenome within an activated sludge microbial assemblage was sampled using culture-dependent and culture-independent methods and compared to the diversity of activated sludge bacterial taxa. A total of 70 unique cultured bacterial isolates, 24 cultured bacteriophages, 829 bacterial metagenomic clones of 16S rRNA genes, and 1,161 viral metagenomic clones were subjected to a phylogenetic analysis.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Metagenoma , Esgotos/virologia , Vírus/classificação , Vírus/genética , Bactérias/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Viral/química , DNA Viral/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cultura de Vírus , Vírus/isolamento & purificação
18.
Mar Ecol Prog Ser ; 653: 57-75, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33424068

RESUMO

The eastern oyster (Crassostrea virginica) is a keystone species in estuarine environments but faces threats to shell formation associated with warming temperatures and acidification. Extrapallial fluid (EF), which is responsible for shell formation, harbors diverse and abundant microbial communities. Commensal microbial communities are vital to host health and fitness, yet long-term studies investigating temporal responses of the EF microbiome and its function in oyster fitness are lacking. In this study, bacterial communities of oyster EF and the water column were characterized monthly from October 2010 to September 2011. We investigated the selection, composition, and dynamics of resident and transient community members, evaluated the impact of temperature on EF microbial communities, and examined the functional role of the EF microbiome. Oyster EF communities were significantly different from the water column and were enriched for several taxa, including the Deltaproteobacteria, Epsilonproteobacteria, and Gammaproteobacteria. Overall, 94 resident members were identified in oyster EF. These members were persistent and abundant, comprising on average 33% of EF communities. Resident EF communities formed high-temperature and low-temperature groups and were more abundant overall at colder temperatures. Oyster EF resident communities were predicted to be enriched for dissimilatory nitrate reduction, nitrogen fixation, nitrification, and sulfite reductase genes. Sulfate and nitrate reduction may have a synergistic effect on calcium carbonate precipitation and indirectly aid in shell formation. Therefore, the potential role of the oyster EF microbiome in shell formation warrants further investigation as oysters and other shellfish face the future impacts of ocean warming and acidification.

19.
Front Microbiol ; 11: 1494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733413

RESUMO

As reported in many aquatic environments, recent studies in terrestrial ecosystems implicate a role for viruses in shaping the structure, function, and evolution of prokaryotic soil communities. However, given the heterogeneity of soil and the physical constraints (i.e., pore-scale hydrology and solid-phase adsorption of phage and host cells) on the mobility of viruses and bacteria, phage-host interactions likely differ from those in aquatic systems. In this study, temporal changes in the population dynamics of viruses and bacteria in soils under different land management practices were examined. The results showed that bacterial abundance was significantly and positively correlated to both virus and inducible prophage abundance. Bacterial and viral abundance were also correlated with soil organic carbon and nitrogen content as well as with C:N ratio. The seasonal variability in viral abundance increased with soil organic carbon content. The prokaryotic community structure was influenced more by land use than by seasonal variation though considerable variation was evident in the early plant successional and grassland sites. The free extracellular viral communities were also separated by land use, and the forest soil viral assemblage exhibiting the most seasonal variability was more distinct from the other sites. Viral assemblages from the agricultural soils exhibited the least seasonal variability. Similar patterns were observed for inducible prophage viral assemblages. Seasonal variability of viral assemblages was greater in mitomycin-C (mitC) induced prophages than in extracellular viruses irrespective of land use and management. Taken together, the data suggest that soil viral production and decay are likely balanced but there was clear evidence that the structure of viral assemblages is influenced by land use and by season.

20.
PeerJ ; 8: e8584, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149022

RESUMO

Phylogenetic trees are an important analytical tool for evaluating community diversity and evolutionary history. In the case of microorganisms, the decreasing cost of sequencing has enabled researchers to generate ever-larger sequence datasets, which in turn have begun to fill gaps in the evolutionary history of microbial groups. However, phylogenetic analyses of these types of datasets create complex trees that can be challenging to interpret. Scientific inferences made by visual inspection of phylogenetic trees can be simplified and enhanced by customizing various parts of the tree. Yet, manual customization is time-consuming and error prone, and programs designed to assist in batch tree customization often require programming experience or complicated file formats for annotation. Iroki, a user-friendly web interface for tree visualization, addresses these issues by providing automatic customization of large trees based on metadata contained in tab-separated text files. Iroki's utility for exploring biological and ecological trends in sequencing data was demonstrated through a variety of microbial ecology applications in which trees with hundreds to thousands of leaf nodes were customized according to extensive collections of metadata. The Iroki web application and documentation are available at https://www.iroki.net or through the VIROME portal http://virome.dbi.udel.edu. Iroki's source code is released under the MIT license and is available at https://github.com/mooreryan/iroki.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA