Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Chem ; 67(9): 1201-1209, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34151944

RESUMO

BACKGROUND: Despite improvements in the genetic and epigenetic analysis of cell-free DNA (cfDNA), there has been limited focus on assessing the preanalytical variables of recovery efficiency following cfDNA extraction and bisulfite modification. Quantification of recovery efficiency after these steps can facilitate quality assurance and improve reliability when comparing serial samples. METHODS: We developed an exogenous DNA Construct to Evaluate the Recovery Efficiency of cfDNA extraction and BISulfite modification (CEREBIS) after cfDNA extraction and/or subsequent bisulfite modification from plasma. The strategic placement of cytosine bases in the 180 bp CEREBIS enabled PCR amplification of the construct by a single primer set both after plasma DNA extraction and following subsequent bisulfite modification. RESULTS: Plasma samples derived from 8 organ transplant donors and 6 serial plasma samples derived from a liver transplant recipient were spiked with a known number of copies of CEREBIS. Recovery of CEREBIS after cfDNA extraction and bisulfite modification was quantified with high analytical accuracy by droplet digital PCR. The use of CEREBIS and quantification of its recovery was useful in identifying problematic extractions. Furthermore, its use was shown to be invaluable towards improving the reliability of the analysis of serial samples. CONCLUSIONS: CEREBIS can be used as a spike-in control to address the preanalytical variable of recovery efficiency both after cfDNA extraction from plasma and following bisulfite modification. Our approach can be readily implemented and its application may have significant benefits, especially in settings where longitudinal quantification of cfDNA for disease monitoring is necessary.


Assuntos
Ácidos Nucleicos Livres , Ácidos Nucleicos Livres/genética , DNA/genética , Humanos , Reprodutibilidade dos Testes , Sulfitos
2.
J Gastroenterol Hepatol ; 36(12): 3500-3507, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34425021

RESUMO

BACKGROUND AND AIM: The role of circulating mitochondrial DNA (cmtDNA) in transplantation remains to be elucidated. cmtDNA may be released into the circulation as a consequence of liver injury; yet recent work also suggests a causative role for cmtDNA leading to hepatocellular injury. We hypothesized that elevated cmtDNA would be associated with adverse events after liver transplantation (LT) and conducted an observational cohort study. METHODS: Twenty-one patients were enrolled prospectively prior to LT. RESULTS: Postoperative complications were observed in 47.6% (n = 10). Seven patients (33.3%) had early allograft dysfunction (EAD), and six patients (28.5%) experienced acute cellular rejection within 6 months of LT. cmtDNA levels were significantly elevated in all recipients after LT compared with healthy controls and preoperative samples (1 361 937 copies/mL [IQR 586 781-3 399 687] after LT; 545 531 copies/mL [IQR 238 562-1 381 015] before LT; and 194 562 copies/mL [IQR 182 359-231 515] in healthy controls) and returned to normal levels by 5 days after transplantation. cmtDNA levels were particularly elevated in those who developed EAD in the early postoperative period (P < 0.001). In all patients, there was initially a strong overall positive correlation between cmtDNA and plasma hepatocellular enzyme levels (P < 0.05). However, the patients with EAD demonstrated a second peak in cmtDNA at postoperative day 7, which did not correlate with liver function tests. CONCLUSIONS: The early release of plasma cmtDNA is strongly associated with hepatocellular damage; however, the late surge in cmtDNA in patients with EAD appeared to be independent of hepatocellular injury as measured by conventional tests.


Assuntos
Ácidos Nucleicos Livres , DNA Mitocondrial , Transplante de Fígado , Aloenxertos/fisiopatologia , DNA Mitocondrial/sangue , Humanos , Transplante de Fígado/efeitos adversos
4.
Epigenomes ; 7(2)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37367181

RESUMO

Background: Graft-derived cell-free DNA (gdcfDNA) analysis has shown promise as a non-invasive tool for monitoring organ health following solid organ transplantation. A number of gdcfDNA analysis techniques have been described; however, the majority rely on sequencing or prior genotyping to detect donor-recipient mis-matched genetic polymorphisms. Differentially methylated regions of DNA can be used to identify the tissue-of-origin of cell-free DNA (cfDNA) fragments. In this study, we aimed to directly compare the performance of gdcfDNA monitoring using graft-specific DNA methylation analysis and donor-recipient genotyping techniques in a pilot cohort of clinical samples from patients post-liver transplantation. Results: 7 patients were recruited prior to LT, 3 developed early, biopsy-proven TCMR in the first 6 weeks post-LT. gdcfDNA was successfully quantified in all samples using both approaches. There was a high level of technical correlation between results using the two techniques (Spearman testing, rs = 0.87, p < 0.0001). gdcfDNA levels quantified using the genotyping approach were significantly greater across all timepoints in comparison to the tissue-specific DNA methylation-based approach: e.g., day 1 post-LT median 31,350 copies/mL (IQR 6731-64,058) vs. 4133 copies/mL (IQR 1100-8422), respectively. Qualitative trends in gdcfDNA levels for each patient were concordant between the two assays. Acute TCMR was preceded by significant elevations in gdcfDNA as quantified by both techniques. Elevations in gdcfDNA, using both techniques, were suggestive of TCMR in this pilot study with a 6- and 3-day lead-time prior to histological diagnosis in patients 1 and 2. Conclusions: Both the graft-specific methylation and genotyping techniques successfully quantified gdcfDNA in patients post-LT with statistically significant concordance. A direct comparison of these two techniques is not only important from a technical perspective for orthogonal validation, but significantly adds weight to the evidence that gdcfDNA monitoring reflects the underlying biology. Both techniques identified LT recipients who developed acute TCMR, with several days lead-time in comparison to conventional diagnostic workflows. Whilst the two assays performed comparably, gdcfDNA monitoring based on graft-specific DNA methylation patterns in cfDNA offers major practical advantages over the donor-recipient genotyping, and hence enhances the potential to translate this emerging technology into clinical practice.

5.
Epigenetics ; 17(13): 1956-1960, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35763697

RESUMO

The detection of methylated templates in cell-free DNA (cfDNA) is increasingly recognized as a valuable, non-invasive tool for diagnosis, monitoring and prognostication in a range of medical contexts. The importance of controlling pre-analytical conditions in laboratory workflows prior to cfDNA quantification is well-established. Significant variations in the recovery of DNA following processes such as cfDNA extraction and sodium bisulphite modification may confound downstream analysis, particularly when accurate quantification of templates is required. Given the wealth of potential applications for this emerging molecular technology, attention has turned to the requirement to recognize and minimize pre-analytical variables prior to cfDNA methylation analysis. We recently described the development of an approach using an exogenous DNA construct to evaluate the recovery efficiency of cfDNA following the extraction and bisulphite modification steps (CEREBIS). Here, we report our experience in the practical application of this technique in 107 consecutive patient plasma samples submitted for quantitative cfDNA methylation analysis. The mean recovery of cfDNA (as estimated using cerebis), following extraction and bisulphite modification, was 37% ± 7%. Nine (8.4%) of the 107 samples were found to be outside of control limits, where the recovery of cerebis indicated significant differences in the efficiency of the pre-analytical processing of these samples. Recognition of these out-of-control samples precluded subsequent molecular analysis. Implementation of data-driven quality control measures, such as the one described, has the potential to improve the quality of liquid biopsy methylation analysis, interpretation and reporting.


Assuntos
Ácidos Nucleicos Livres , Metilação de DNA , Humanos , Ácidos Nucleicos Livres/genética , DNA/genética , Biópsia Líquida
6.
Leukemia ; 33(8): 2022-2033, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30992504

RESUMO

Monitoring tumour burden and therapeutic response through analyses of circulating cell-free tumour DNA (ctDNA) and extracellular RNA (exRNA) in multiple myeloma (MM) patients were performed in a Phase Ib trial of 24 relapsed/refractory patients receiving oral azacitidine in combination with lenalidomide and dexamethasone. Mutational characterisation of paired BM and PL samples at study entry identified that patients with a higher number of mutations or a higher mutational fractional abundance in PL had significantly shorter overall survival (OS) (p = 0.005 and p = 0.018, respectively). A decrease in ctDNA levels at day 5 of cycle 1 of treatment (C1D5) correlated with superior progression-free survival (PFS) (p = 0.017). Evaluation of exRNA transcripts of candidate biomarkers indicated that high CRBN levels coupled with low levels of SPARC at baseline were associated with shorter OS (p = 0.000003). IKZF1 fold-change <0.05 at C1D5 was associated with shorter PFS (p = 0.0051) and OS (p = 0.0001). Furthermore, patients with high baseline CRBN coupled with low fold-change at C1D5 were at the highest risk of progression (p = 0.0001). In conclusion, this exploratory analysis has provided the first demonstration in MM of ctDNA for predicting disease outcome and of the utility of exRNA as a biomarker of therapeutic response.


Assuntos
DNA Tumoral Circulante/análise , Mieloma Múltiplo/tratamento farmacológico , RNA/análise , Proteínas Adaptadoras de Transdução de Sinal , Efeitos Psicossociais da Doença , Genes p53 , Humanos , Fator de Transcrição Ikaros/análise , Mieloma Múltiplo/sangue , Mieloma Múltiplo/genética , Mieloma Múltiplo/mortalidade , Mutação , Peptídeo Hidrolases/análise , Prognóstico , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA