RESUMO
Microporous membranes are widely utilized in cell biology to study cell-cell signaling and cell migration. However, the thickness and low porosity of commercial track-etched membranes limit the quality of cell imaging and the degree of cell-cell contact that can be achieved on such devices. We employ photolithography-based microfabrication to achieve porous membranes with pore diameter as small as 0.9 µm, up to 40% porosity, and less than 5% variation in pore size. Through the use of a soap release layer, membranes as thin as 1 µm can be achieved. The thin membranes minimally disrupt contrast enhancement optics, thus allowing good quality imaging of unlabeled cells under white light, unlike commercial membranes. In addition, the polymer membrane materials display low autofluorescence even after patterning, facilitating high quality fluorescence microscopy. Finally, confocal imaging suggests that substantial cell-cell contact is possible through the pores of these thin membranes. This membrane technology can enhance existing uses of porous membranes in cell biology as well as enable new types of experiments.
RESUMO
Experimental evolution using fast-growing unicellular organisms is a unique strategy for deciphering the principles and mechanisms underlying evolutionary processes as well as the architecture and wiring of basic biological functions. Over the past decade, this approach has benefited from the development of powerful systems for the continuous control of the growth of independently evolving cultures. While the first devices compatible with multiplexed experimental evolution remained challenging to implement and required constant user intervention, the recently-developed eVOLVER framework represents a fully automated closed-loop system for laboratory evolution assays. However, it remained difficult to maintain and compare parallel evolving cultures in tightly controlled environments over long periods of time using eVOLVER. Furthermore, a number of tools were lacking to cope with the various issues that inevitably occur when conducting such long-term assays. Here we present a significant upgrade of the eVOLVER framework, providing major modifications of the experimental methodology, hardware and software as well as a new standalone protocol. Altogether, these adaptations and improvements make the eVOLVER a versatile and unparalleled setup for long-term experimental evolution.
RESUMO
Experimental evolution using fast-growing unicellular organisms is a unique strategy for deciphering the principles and mechanisms underlying evolutionary processes as well as the architecture and wiring of basic biological functions. Over the past decade, this approach has benefited from the development of powerful systems for the continuous control of the growth of independently evolving cultures. While the first devices compatible with multiplexed experimental evolution remained challenging to implement and required constant user intervention, the recently developed eVOLVER framework represents a fully automated closed-loop system for laboratory evolution assays. However, it remained difficult to maintain and compare parallel evolving cultures in tightly controlled environments over long periods of time using eVOLVER. Furthermore, a number of tools were lacking to cope with the various issues that inevitably occur when conducting such long-term assays. Here we present a significant upgrade of the eVOLVER framework, providing major modifications of the experimental methodology, hardware and software as well as a new stand-alone protocol. Altogether, these adaptations and improvements make the eVOLVER a versatile and unparalleled set-up for long-term experimental evolution.
Assuntos
Evolução Biológica , SoftwareRESUMO
Despite the availability of Cas9 variants with varied protospacer-adjacent motif (PAM) compatibilities, some genomic loci-especially those with pyrimidine-rich PAM sequences-remain inaccessible by high-activity Cas9 proteins. Moreover, broadening PAM sequence compatibility through engineering can increase off-target activity. With directed evolution, we generated four Cas9 variants that together enable targeting of most pyrimidine-rich PAM sequences in the human genome. Using phage-assisted noncontinuous evolution and eVOLVER-supported phage-assisted continuous evolution, we evolved Nme2Cas9, a compact Cas9 variant, into variants that recognize single-nucleotide pyrimidine-PAM sequences. We developed a general selection strategy that requires functional editing with fully specified target protospacers and PAMs. We applied this selection to evolve high-activity variants eNme2-T.1, eNme2-T.2, eNme2-C and eNme2-C.NR. Variants eNme2-T.1 and eNme2-T.2 offer access to N4TN PAM sequences with comparable editing efficiencies as existing variants, while eNme2-C and eNme2-C.NR offer less restrictive PAM requirements, comparable or higher activity in a variety of human cell types and lower off-target activity at N4CN PAM sequences.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Genoma Humano/genética , PirimidinasRESUMO
We present automated continuous evolution (ACE), a platform for the hands-free directed evolution of biomolecules. ACE pairs OrthoRep, a genetic system for continuous targeted mutagenesis of user-selected genes in vivo, with eVOLVER, a scalable and automated continuous culture device for precise, multiparameter regulation of growth conditions. By implementing real-time feedback-controlled tuning of selection stringency with eVOLVER, genes of interest encoded on OrthoRep autonomously traversed multimutation adaptive pathways to reach desired functions, including drug resistance and improved enzyme activity. The durability, scalability, and speed of biomolecular evolution with ACE should be broadly applicable to protein engineering as well as prospective studies on how selection parameters and schedules shape adaptation.
Assuntos
Evolução Molecular Direcionada/métodos , Saccharomyces cerevisiae/metabolismo , Algoritmos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutagênese , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Thermotoga maritima/metabolismoRESUMO
Continuous culture methods enable cells to be grown under quantitatively controlled environmental conditions, and are thus broadly useful for measuring fitness phenotypes and improving our understanding of how genotypes are shaped by selection. Extensive recent efforts to develop and apply niche continuous culture devices have revealed the benefits of conducting new forms of cell culture control. This includes defining custom selection pressures and increasing throughput for studies ranging from long-term experimental evolution to genome-wide library selections and synthetic gene circuit characterization. The eVOLVER platform was recently developed to meet this growing demand: a continuous culture platform with a high degree of scalability, flexibility, and automation. eVOLVER provides a single standardizing platform that can be (re)-configured and scaled with minimal effort to perform many different types of high-throughput or multi-dimensional growth selection experiments. Here, a protocol is presented to provide users of the eVOLVER framework a description for configuring the system to conduct a custom, large-scale continuous growth experiment. Specifically, the protocol guides users on how to program the system to multiplex two selection pressures - temperature and osmolarity - across many eVOLVER vials in order to quantify fitness landscapes of Saccharomyces cerevisiae mutants at fine resolution. We show how the device can be configured both programmatically, through its open-source web-based software, and physically, by arranging fluidic and hardware layouts. The process of physically setting up the device, programming the culture routine, monitoring and interacting with the experiment in real-time over the internet, sampling vials for subsequent offline analysis, and post experiment data analysis are detailed. This should serve as a starting point for researchers across diverse disciplines to apply eVOLVER in the design of their own complex and high-throughput cell growth experiments to study and manipulate biological systems.
Assuntos
Técnicas de Cultura/métodos , Saccharomyces cerevisiae/citologia , Software , Automação , Ciclo Celular , Proliferação de Células , Fenótipo , Saccharomyces cerevisiae/genéticaRESUMO
The fast-growing Gram-negative bacterium Vibrio natriegens is an attractive microbial system for molecular biology and biotechnology due to its remarkably short generation time1,2 and metabolic prowess3,4. However, efforts to uncover and utilize the mechanisms underlying its rapid growth are hampered by the scarcity of functional genomic data. Here, we develop a pooled genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) screen to identify a minimal set of genes required for rapid wild-type growth. Targeting 4,565 (99.7%) of predicted protein-coding genes, our screen uncovered core genes comprising putative essential and growth-supporting genes that are enriched for respiratory pathways. We found that 96% of core genes were located on the larger chromosome 1, with growth-neutral duplicates of core genes located primarily on chromosome 2. Our screen also refines metabolic pathway annotations by distinguishing functional biosynthetic enzymes from those predicted on the basis of comparative genomics. Taken together, this work provides a broadly applicable platform for high-throughput functional genomics to accelerate biological studies and engineering of V. natriegens.
Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Bacteriano/genética , Vibrio/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , Meios de Cultura , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Genômica , Vibrio/crescimento & desenvolvimentoRESUMO
Precise control over microbial cell growth conditions could enable detection of minute phenotypic changes, which would improve our understanding of how genotypes are shaped by adaptive selection. Although automated cell-culture systems such as bioreactors offer strict control over liquid culture conditions, they often do not scale to high-throughput or require cumbersome redesign to alter growth conditions. We report the design and validation of eVOLVER, a scalable do-it-yourself (DIY) framework, which can be configured to carry out high-throughput growth experiments in molecular evolution, systems biology, and microbiology. High-throughput evolution of yeast populations grown at different densities reveals that eVOLVER can be applied to characterize adaptive niches. Growth selection on a genome-wide yeast knockout library, using temperatures varied over different timescales, finds strains sensitive to temperature changes or frequency of temperature change. Inspired by large-scale integration of electronics and microfluidics, we also demonstrate millifluidic multiplexing modules that enable multiplexed media routing, cleaning, vial-to-vial transfers and automated yeast mating.
Assuntos
Bactérias/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimentoRESUMO
It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1-expressing (NKX2-1+) precursor cells. However, this hypothesis has not been formally tested owing to an inability to purify or track these progenitors for detailed characterization. Here we have engineered and developmentally differentiated NKX2-1GFP reporter pluripotent stem cells (PSCs) in vitro to generate and isolate human primordial lung progenitors that express NKX2-1 but are initially devoid of differentiated lung lineage markers. After sorting to purity, these primordial lung progenitors exhibited lung epithelial maturation. In the absence of mesenchymal coculture support, this NKX2-1+ population was able to generate epithelial-only spheroids in defined 3D cultures. Alternatively, when recombined with fetal mouse lung mesenchyme, the cells recapitulated epithelial-mesenchymal developing lung interactions. We imaged these progenitors in real time and performed time-series global transcriptomic profiling and single-cell RNA sequencing as they moved through the earliest moments of lung lineage specification. The profiles indicated that evolutionarily conserved, stage-dependent gene signatures of early lung development are expressed in primordial human lung progenitors and revealed a CD47hiCD26lo cell surface phenotype that allows their prospective isolation from untargeted, patient-specific PSCs for further in vitro differentiation and future applications in regenerative medicine.
Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Separação Celular , Células Cultivadas , Citometria de Fluxo , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos , Fator Nuclear 1 de Tireoide , TranscriptomaRESUMO
BACKGROUND: Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. RESULTS: We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. CONCLUSIONS: Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate.
Assuntos
Escherichia coli/fisiologia , Mapeamento de Interação de Proteínas , Biologia Computacional , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , FenótipoRESUMO
Stem cells niches are increasingly recognized as dynamic environments that play a key role in transducing signals that allow an organism to exert control on its stem cells. Live imaging of stem cell niches in their in vivo setting is thus of high interest to dissect stem cell controls. Here we report a new microfluidic design that is highly amenable to dissemination in biology laboratories that have no microfluidics expertise. This design has allowed us to perform the first time lapse imaging of the C. elegans germline stem cell niche. Our results show that this niche is strikingly dynamic, and that morphological changes that take place during development are the result of a highly active process. These results lay the foundation for future studies to dissect molecular mechanisms by which stem cell niche morphology is modulated, and by which niche morphology controls stem cell behavior.