Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Cancer Res ; 82(22): 4288-4298, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36112781

RESUMO

T cell-engaging bispecific antibodies (TCB) are highly potent therapeutics that can recruit and activate cytotoxic T cells to stimulate an antitumor immune response. However, the development of TCBs against solid tumors has been limited by significant on-target toxicity to normal tissues. Probody therapeutics have been developed as a novel class of recombinant, protease-activated antibody prodrugs that are "masked" to reduce antigen binding in healthy tissues but can become conditionally unmasked by proteases that are preferentially active in the tumor microenvironment (TME). Here, we describe the preclinical efficacy and safety of CI107, a Probody TCB targeting EGFR and CD3. In vitro, the protease-activated, unmasked CI107 effectively bound EGFR and CD3 expressed on the surface of cells and induced T-cell activation, cytokine release, and cytotoxicity toward tumor cells. In contrast, dually masked CI107 displayed a >500-fold reduction in antigen binding and >15,000-fold reduction in cytotoxic activity. In vivo, CI107 potently induced dose-dependent tumor regression of established colon cancer xenografts in mice engrafted with human peripheral blood mononuclear cells. Furthermore, the MTD of CI107 in cynomolgus monkeys was more than 60-fold higher than that of the unmasked TCB, and much lower levels of toxicity were observed in animals receiving CI107. Therefore, by localizing activity to the TME and thus limiting toxicity to normal tissues, this Probody TCB demonstrates the potential to expand clinical opportunities for TCBs as effective anticancer therapies for solid tumor indications. SIGNIFICANCE: A conditionally active EGFR-CD3 T cell-engaging Probody therapeutic expands the safety window of bispecific antibodies while maintaining efficacy in preclinical solid tumor settings.


Assuntos
Anticorpos Biespecíficos , Complexo CD3 , Neoplasias do Colo , Receptores ErbB , Animais , Humanos , Camundongos , Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/antagonistas & inibidores , Neoplasias do Colo/terapia , Receptores ErbB/antagonistas & inibidores , Leucócitos Mononucleares/metabolismo , Peptídeo Hidrolases/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Biol Evol ; 22(2): 308-16, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15483318

RESUMO

Lateral gene transfer (LGT) from prokaryotes to microbial eukaryotes is usually detected by chance through genome-sequencing projects. Here, we explore a different, hypothesis-driven approach. We show that the fitness advantage associated with the transferred gene, typically invoked only in retrospect, can be used to design a functional screen capable of identifying postulated LGT cases. We hypothesized that beta-glucuronidase (gus) genes may be prone to LGT from bacteria to fungi (thought to lack gus) because this would enable fungi to utilize glucuronides in vertebrate urine as a carbon source. Using an enrichment procedure based on a glucose-releasing glucuronide analog (cellobiouronic acid), we isolated two gus(+) ascomycete fungi from soils (Penicillium canescens and Scopulariopsis sp.). A phylogenetic analysis suggested that their gus genes, as well as the gus genes identified in genomic sequences of the ascomycetes Aspergillus nidulans and Gibberella zeae, had been introgressed laterally from high-GC gram(+) bacteria. Two such bacteria (Arthrobacter spp.), isolated together with the gus(+) fungi, appeared to be the descendants of a bacterial donor organism from which gus had been transferred to fungi. This scenario was independently supported by similar substrate affinities of the encoded beta-glucuronidases, the absence of introns from fungal gus genes, and the similarity between the signal peptide-encoding 5' extensions of some fungal gus genes and the Arthrobacter sequences upstream of gus. Differences in the sequences of the fungal 5' extensions suggested at least two separate introgression events after the divergence of the two main Euascomycete classes. We suggest that deposition of glucuronides on soils as a result of the colonization of land by vertebrates may have favored LGT of gus from bacteria to fungi in soils.


Assuntos
Bactérias/genética , Fungos/genética , Transferência Genética Horizontal , Glucuronidase/genética , Sequência de Aminoácidos , Ascomicetos/genética , Genes Bacterianos/genética , Genes Fúngicos/genética , Glucuronidase/classificação , Bactérias Gram-Positivas/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
3.
Planta ; 215(2): 191-4, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12029467

RESUMO

Expression of knotted1 ( kn1) and ZmLEC1, a maize homologue of the Arabidopsis LEAFY COTYLEDON1 ( LEC1) was studied using in situ hybridization during in vitro somatic embryogenesis of maize ( Zea mays L.) genotype Hi-II. Expression of kn1 was initially detected in a small group of cells (5-10) in the somatic embryo proper at the globular stage, in a specific region where the shoot meristem is initiating at the scutellar stage, and specifically in the shoot meristem at the coleoptilar stage. Expression of ZmLEC1 was strongly detected in the entire somatic embryo proper at the globular stage, gradually less in the differentiating scutellum at the scutellar and coleoptilar stages. The results of analyses show that the expression pattern of kn1 during in vitro somatic embryogenesis of maize is similar to that of kn1 observed during zygotic embryo development in maize. The expression pattern of ZmLEC1 in maize during in vitro development is similar to that of LEC1 in Arabidopsis during zygotic embryo development. These observations indicate that in vitro somatic embryogenesis likely proceeds through similar developmental pathways as zygotic embryo development, after somatic cells acquire competence to form embryos. In addition, based on the ZmLEC1 expression pattern, we suggest that expression of ZmLEC1 can be used as a reliable molecular marker for detecting early-stage in vitro somatic embryogenesis in maize.


Assuntos
Proteínas de Arabidopsis , Proteínas Estimuladoras de Ligação a CCAAT/genética , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Sementes/genética , Fatores de Transcrição/genética , Zea mays/genética , Genótipo , Hibridização In Situ , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Zea mays/embriologia , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA