Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 168: 280-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26788665

RESUMO

Coastal floodplain soils and wetland sediments can store large amounts of soil organic carbon (SOC). These environments are also commonly underlain by sulfidic sediments which can oxidise to form coastal acid sulfate soils (CASS) and contain high concentrations of acidity and trace metals. CASS are found on every continent globally except Antarctica. When sulfidic sediments are oxidised, scalds can form, which are large bare patches without vegetation. However, SOC stocks and fractions have not been quantified in these coastal floodplain environments. We studied the changes in soil geochemistry and SOC stocks and fractions three years after remediation of a CASS scald. Remediation treatments included raising water levels, and addition of either lime (LO) or lime and mulch (LM) relative to a control (C) site. We found SOC concentrations in the remediated sites (LO and LM) were more than double than that found at site C, reflected in the higher SOC stocks to a depth of 1.6 m (426 Mg C/ha, 478 Mg C/ha and 473 Mg C/ha at sites C, LO and LM, respectively). The particulate organic C (POC) fraction was higher at sites LO and LM due to increased vegetation and biomass inputs, compared to site C. Reformation of acid volatile sulfide (AVS) occurred throughout the profile at site LM, whereas only limited AVS reformation occurred at sites LO and C. Higher AVS at site LM may be linked to the additional source of organic matter provided by the mulch. POC can also potentially contribute to decreasing acidity as a labile SOC source for Fe(3+) and SO4(2-) reduction. Therefore, coastal floodplains and wetlands are a large store of SOC and can potentially increase SOC following remediation due to i) reduced decomposition rates with higher water levels and waterlogging, and ii) high C inputs due to rapid revegetation of scalded areas and high rates of biomass production. These results highlight the importance of maintaining vegetation cover in coastal floodplains and wetlands for sequestering SOC.


Assuntos
Carbono/química , Solo/química , Áreas Alagadas , Biomassa , Recuperação e Remediação Ambiental , Humanos
2.
J Environ Manage ; 112: 330-9, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22964040

RESUMO

The accumulation of monosulfidic sediments in inland waterways is emerging as a major environmental issue. Mobilisation and suspension of monosulfidic sediments can result in deoxygenation, acidification of the water column and mobilisation of trace metals. The controls on monosulfidic sediment mobilisation and the critical thresholds for its scour and entrainment have not been established. This study examines the effect of a minor flood event (average return interval of 5 years) on sulfidic sediment scour in the Wakool River in southern NSW, Australia. Five profiles were sampled within a small (~300 m) reach before and after a minor flood event to determine the degree of sediment scour and transport. The results indicate substantial scour of both monosulfidic sediments and underlying bed sediments (approximately 2100 m(3)). Changes in the sediment geochemistry suggest large concentrations of monosulfidic sediments had been suspended in the water column, partially-oxidised and redeposited. This is supported by (210)Pb results from one of the profiles. These results suggest that these monosulfidic sediments can move as bed load during minor flood events.


Assuntos
Sedimentos Geológicos/análise , Monitoramento Ambiental , Rios
3.
Sci Total Environ ; 763: 142949, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131859

RESUMO

Predicted sea level fluctuations and sea level rise with climate change will lead to inundation of coastal and estuarine soils. Coastal wetlands usually contain large amounts of organic matter, which can be potential sources of greenhouse gas emissions (GHGs; CO2, CH4, N2O) during decomposition, but there are limited studies on the effects of sea level variation on GHGs in coastal wetlands. We measured the effect of brackish water inundation and wetting and drying cycles on GHG emissions from coastal wetland soil cores that supported four different vegetation types: Apium gravedens (AG), Leptospermum lanigerum (LL), Phragmites australis (PA) and Paspalum distichum (PD) from the estuarine floodplain of the Aire River in south-western Victoria, Australia. Intact soil cores were incubated under either dry, flooded, or a 14 day wet-dry cycle treatments for a total of 56 days at a constant temperature of 23 °C. CO2, CH4, and N2O fluxes were investigated in closed chambers and measured with gas chromatography. In the dry treatment, a positive correlation was found between soil organic carbon (SOC) and CO2 flux, and between SOC and CH4 flux. Higher SOC is indicative of higher amounts of soil organic matter (SOM) which acts as a source of substrate for microbes to produce CO2 or CH4 emissions under aerobic or anaerobic conditions. The NO2- and NO3- concentrations were positively correlated with N2O emissions in the wet-dry cycle treatment. NO2- and NO3- provide a supply of substrate for denitrification. The flooded treatment decreased cumulative CO2 emissions by 34%, 25% and 14% at the LL, PA, PD sites, respectively, and decreased cumulative N2O emissions by 42%, 39% and 43% at the AG, LL and PA sites, compared to the dry treatment. The wet-dry cycle treatment and dry treatment decreased cumulative CH4 emissions for all vegetation types compared to the flooded treatment. The redox potential (Eh) was negatively correlated with CH4 flux and positively correlated N2O flux at all sites. This study highlights the significance of sea level fluctuations when estimating GHG flux from coastal and estuarine floodplains which are highly vulnerable to inundation, and the role of SOC and mineral N as important drivers affecting GHG flux.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA