Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 12(2): 1604-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22630010

RESUMO

We report on the fabrication of the nanoporous TiO2 hollow capsules using core-shell silica nanoparticle templates. The thickness of the capsules can be simply controlled by varying the amount of the TiO2 precursor. The resulting nanoporous capsules exhibited the high specific surface area and the large pore volume of 103-180 m2/g and 0.40-0.86 cm3/g, respectively. Photocatalytic activity of the TiO2 hollow capsules was also investigated and compared to that of the commercial TiO2 nanoparticles.

2.
ACS Nano ; 5(3): 2271-6, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21355535

RESUMO

We report on the fabrication and measurements of a superconducting junction of a single-crystalline Au nanowire, connected to Al electrodes. The current-voltage characteristic curve shows a clear supercurrent branch below the superconducting transition temperature of Al and quantized voltage plateaus on application of microwave radiation, as expected from Josephson relations. Highly transparent (0.95) contacts very close to an ideal limit of 1 are formed at the interface between the normal metal (Au) and the superconductor (Al). The very high transparency is ascribed to the single crystallinity of a Au nanowire and the formation of an oxide-free contact between Au and Al. The subgap structures of the differential conductance are well explained by coherent multiple Andreev reflections (MAR), the hallmark of mesoscopic Josephson junctions. These observations demonstrate that single crystalline Au nanowires can be employed to develop novel quantum devices utilizing coherent electrical transport.


Assuntos
Metais/química , Nanoestruturas/química , Semicondutores , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanoestruturas/ultraestrutura
3.
Nano Lett ; 8(10): 3092-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18798683

RESUMO

We report on the influence of structural disorder on the electrical properties of multilayer graphene (MLG). Exponential decreases in the conductance and transconductance with increase of defects in the MLG were observed, which could be explained by the percolation and the variable range hopping conduction. An enhancement of p-type nature with increasing disorders was considered to be the result of oxygen doping in the graphene sheets introduced by oxygen plasma. The rapid increase of low-frequency noise was attributed to the formation of conductive network through the continuum percolation, as the low-frequency noise could be increased by the enhanced carrier scattering at the defect sites. We hope that our result should suggest a simple method of tuning the electrical properties of graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA