Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 140(1): 99-110, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20085705

RESUMO

Polycomb group (PcG) proteins are essential for accurate axial body patterning during embryonic development. PcG-mediated repression is conserved in metazoans and is targeted in Drosophila by Polycomb response elements (PREs). However, targeting sequences in humans have not been described. While analyzing chromatin architecture in the context of human embryonic stem cell (hESC) differentiation, we discovered a 1.8kb region between HOXD11 and HOXD12 (D11.12) that is associated with PcG proteins, becomes nuclease hypersensitive, and then shows alteration in nuclease sensitivity as hESCs differentiate. The D11.12 element repressed luciferase expression from a reporter construct and full repression required a highly conserved region and YY1 binding sites. Furthermore, repression was dependent on the PcG proteins BMI1 and EED and a YY1-interacting partner, RYBP. We conclude that D11.12 is a Polycomb-dependent regulatory region with similarities to Drosophila PREs, indicating conservation in the mechanisms that target PcG function in mammals and flies.


Assuntos
Células-Tronco Embrionárias/metabolismo , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Elementos Reguladores de Transcrição , Proteínas Repressoras/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Proteínas Proto-Oncogênicas/metabolismo
2.
Clin Proteomics ; 21(1): 8, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311768

RESUMO

BACKGROUND: Dynein axonemal intermediate chain 1 protein (DNAI1) plays an essential role in cilia structure and function, while its mutations lead to primary ciliary dyskinesia (PCD). Accurate quantitation of DNAI1 in lung tissue is crucial for comprehensive understanding of its involvement in PCD, as well as for developing the potential PCD therapies. However, the current protein quantitation method is not sensitive enough to detect the endogenous level of DNAI1 in complex biological matrix such as lung tissue. METHODS: In this study, a quantitative method combining immunoprecipitation with nanoLC-MS/MS was developed to measure the expression level of human wild-type (WT) DNAI1 protein in lung tissue. To our understanding, it is the first immunoprecipitation (IP)-MS based method for absolute quantitation of DNAI1 protein in lung tissue. The DNAI1 quantitation was achieved through constructing a standard curve with recombinant human WT DNAI1 protein spiked into lung tissue matrix. RESULTS: This method was qualified with high sensitivity and accuracy. The lower limit of quantitation of human DNAI1 was 4 pg/mg tissue. This assay was successfully applied to determine the endogenous level of WT DNAI1 in human lung tissue. CONCLUSIONS: The results clearly demonstrate that the developed assay can accurately quantitate low-abundance WT DNAI1 protein in human lung tissue with high sensitivity, indicating its high potential use in the drug development for DNAI1 mutation-caused PCD therapy.

3.
Nucleic Acids Res ; 49(20): 11560-11574, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718736

RESUMO

Friedreich's ataxia (FRDA) is a severe multisystem disease caused by transcriptional repression induced by expanded GAA repeats located in intron 1 of the Frataxin (FXN) gene encoding frataxin. FRDA results from decreased levels of frataxin; thus, stabilization of the FXN mRNA already present in patient cells represents an attractive and unexplored therapeutic avenue. In this work, we pursued a novel approach based on oligonucleotide-mediated targeting of FXN mRNA ends to extend its half-life and availability as a template for translation. We demonstrated that oligonucleotides designed to bind to FXN 5' or 3' noncoding regions can increase FXN mRNA and protein levels. Simultaneous delivery of oligonucleotides targeting both ends increases efficacy of the treatment. The approach was confirmed in several FRDA fibroblast and induced pluripotent stem cell-derived neuronal progenitor lines. RNA sequencing and single-cell expression analyses confirmed oligonucleotide-mediated FXN mRNA upregulation. Mechanistically, a significant elongation of the FXN mRNA half-life without any changes in chromatin status at the FXN gene was observed upon treatment with end-targeting oligonucleotides, indicating that transcript stabilization is responsible for frataxin upregulation. These results identify a novel approach toward upregulation of steady-state mRNA levels via oligonucleotide-mediated end targeting that may be of significance to any condition resulting from transcription downregulation.


Assuntos
Ataxia de Friedreich/terapia , Terapia Genética/métodos , Proteínas de Ligação ao Ferro/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Células Cultivadas , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , Frataxina
4.
Pulm Pharmacol Ther ; 75: 102134, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35613658

RESUMO

Primary ciliary dyskinesia (PCD) is a respiratory disease caused by dysfunction of the cilia with currently no approved treatments. This predominantly autosomal recessive disease is caused by mutations in any one of over 50 genes involved in cilia function; DNAI1 is one of the more frequently mutated genes, accounting for approximately 5-10% of diagnosed PCD cases. A codon-optimized mRNA encoding DNAI1 and encapsulated in a lipid nanoparticle (LNP) was administered to mice via aerosolized inhalation resulting in the expression human DNAI1 in the multiciliated cells of the pseudostratified columnar epithelia. The spatial localization of DNAI1 expression in the bronchioles indicate that delivery of the DNAI1 mRNA transpires the lower airways. In a PCD disease model, exposure to the LNP-encapsulated DNAI1 mRNA resulted in increased ciliary beat frequency using high speed videomicroscopy showing the potential for an mRNA therapeutic to correct cilia function in patients with PCD due to DNAI1 mutations.


Assuntos
Síndrome de Kartagener , Animais , Dineínas do Axonema/genética , Cílios , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/tratamento farmacológico , Síndrome de Kartagener/genética , Lipossomos , Camundongos , Mutação , Nanopartículas , RNA Mensageiro
5.
Proc Natl Acad Sci U S A ; 114(8): E1509-E1518, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28193854

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by progressive motor neuron loss and caused by mutations in SMN1 (Survival Motor Neuron 1). The disease severity inversely correlates with the copy number of SMN2, a duplicated gene that is nearly identical to SMN1. We have delineated a mechanism of transcriptional regulation in the SMN2 locus. A previously uncharacterized long noncoding RNA (lncRNA), SMN-antisense 1 (SMN-AS1), represses SMN2 expression by recruiting the Polycomb Repressive Complex 2 (PRC2) to its locus. Chemically modified oligonucleotides that disrupt the interaction between SMN-AS1 and PRC2 inhibit the recruitment of PRC2 and increase SMN2 expression in primary neuronal cultures. Our approach comprises a gene-up-regulation technology that leverages interactions between lncRNA and PRC2. Our data provide proof-of-concept that this technology can be used to treat disease caused by epigenetic silencing of specific loci.


Assuntos
Atrofia Muscular Espinal/terapia , Oligonucleotídeos/genética , Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Éxons/genética , Fibroblastos , Dosagem de Genes , Terapia Genética/métodos , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Mutação Puntual , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Ativação Transcricional/genética , Regulação para Cima
6.
J Robot Surg ; 18(1): 281, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967691

RESUMO

Robot-assisted general surgery, an advanced technology in minimally invasive procedures, is increasingly employed in elective general surgery, showing benefits over laparoscopy in specific cases. Although laparoscopy remains a standard approach for common acute abdominal conditions, the role of robotic surgery in emergency general surgery remains uncertain. This systematic review aims to compare outcomes in acute general surgery settings for robotic versus laparoscopic surgeries. A PRISMA-compliant systematic search across MEDLINE, EMBASE, Science Citation Index Expanded, and the Cochrane Library was conducted. The literature review focused on articles comparing perioperative outcomes of emergency general surgery managed laparoscopically versus robot-assisted. A descriptive analysis was performed, and outcome measures were recorded. Six articles, involving 1,063 patients, compared outcomes of robotic and laparoscopic procedures. Two articles covered cholecystectomies, while the others addressed ileocaecal resection, subtotal colectomy, hiatal hernia and repair of perforated gastrojejunal ulcers. The level of evidence was low. Laparoscopic bowel resection in patients with inflammatory bowel disease (IBD) had higher complications; no significant differences were found in complications for other operations. Operative time showed no differences for cholecystectomies, but robotic approaches took longer for other procedures. Robotic cases had shorter hospital length of stay, although the associated costs were significantly higher. Perioperative outcomes for emergency robotic surgery in selected general surgery conditions are comparable to laparoscopic surgery. However, recommending robotic surgery in the acute setting necessitates a well-powered large population study for stronger evidence.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Procedimentos Cirúrgicos Robóticos/estatística & dados numéricos , Procedimentos Cirúrgicos Robóticos/economia , Laparoscopia/métodos , Tempo de Internação/estatística & dados numéricos , Emergências , Duração da Cirurgia , Resultado do Tratamento , Cirurgia Geral/métodos , Complicações Pós-Operatórias/epidemiologia
7.
Hum Mol Genet ; 19(4): 573-83, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19933700

RESUMO

Huntington's disease (HD) is caused by expansion of the polymorphic polyglutamine segment in the huntingtin protein. Full-length huntingtin is thought to be a predominant HEAT repeat alpha-solenoid, implying a role as a facilitator of macromolecular complexes. Here we have investigated huntingtin's domain structure and potential intersection with epigenetic silencer polycomb repressive complex 2 (PRC2), suggested by shared embryonic deficiency phenotypes. Analysis of a set of full-length recombinant huntingtins, with different polyglutamine regions, demonstrated dramatic conformational flexibility, with an accessible hinge separating two large alpha-helical domains. Moreover, embryos lacking huntingtin exhibited impaired PRC2 regulation of Hox gene expression, trophoblast giant cell differentiation, paternal X chromosome inactivation and histone H3K27 tri-methylation, while full-length endogenous nuclear huntingtin in wild-type embryoid bodies (EBs) was associated with PRC2 subunits and was detected with trimethylated histone H3K27 at Hoxb9. Supporting a direct stimulatory role, full-length recombinant huntingtin significantly increased the histone H3K27 tri-methylase activity of reconstituted PRC2 in vitro, and structure-function analysis demonstrated that the polyglutamine region augmented full-length huntingtin PRC2 stimulation, both in Hdh(Q111) EBs and in vitro, with reconstituted PRC2. Knowledge of full-length huntingtin's alpha-helical organization and role as a facilitator of the multi-subunit PRC2 complex provides a novel starting point for studying PRC2 regulation, implicates this chromatin repressive complex in a neurodegenerative disorder and sets the stage for further study of huntingtin's molecular function and the impact of its modulatory polyglutamine region.


Assuntos
Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Histonas/genética , Histonas/metabolismo , Humanos , Proteína Huntingtina , Doença de Huntington/embriologia , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas do Grupo Polycomb , Ligação Proteica , Proteínas Repressoras/genética , Homologia de Sequência de Aminoácidos
8.
Addiction ; 100 Suppl 1: 32-42, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15730348

RESUMO

AIMS: To conduct a medication screening trial study on the efficacy of celecoxib versus placebo for the treatment of cocaine dependence. DESIGN: A modified blinded, parallel group study in an outpatient setting using the Cocaine Rapid Efficacy and Safety Trials (CREST) study design. SETTING: The study was performed at the New York Medications Development Research Unit (MDRU). PARTICIPANTS: All participants met Diagnostic and Statistical Manual version IV (DSM-IV) criteria for cocaine dependence and provided at least two urine samples positive for benzoylecgonine (BE) during the 2-week screening period. Twenty-three participants were enrolled in the treatment phase of the study. INTERVENTION: After a 2-week screening period, subjects were assigned randomly to receive either celebrex (200 mg/day) or placebo for an 8-week treatment period. All subjects also received individual cognitive behavioral counseling during treatment. MEASUREMENTS: Primary outcome measures included quantitative urine benzoylecgonine (BE) levels, self-report of drug use and global impression scores. Secondary outcomes included cocaine craving, study retention and related psychosocial measures. Safety measures included adverse event monitoring, vital signs and extrapyramidal side-effects tests. RESULTS: Study retention was similar across both treatment groups and safety measures indicated that celecoxib was moderately tolerated. Cocaine use, as measured by self-report and urine BE levels at end of treatment, indicated weaker improvement in the celecoxib group. Reductions in the intensity of cocaine craving were also weaker in the celecoxib group. Cocaine abstinence rates, global impression scores and all other related psychometric measures did not differ significantly between treatment groups. CONCLUSION: This study does not support the effectiveness of celecoxib for the treatment of cocaine dependence.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/reabilitação , Inibidores de Ciclo-Oxigenase/uso terapêutico , Pirazóis/uso terapêutico , Sulfonamidas/uso terapêutico , Adolescente , Adulto , Celecoxib , Inibidores de Ciclo-Oxigenase/administração & dosagem , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Mol Cell Biol ; 33(16): 3274-85, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23775117

RESUMO

Polycomb group (PcG)-mediated repression is an evolutionarily conserved process critical for cell fate determination and maintenance of gene expression during embryonic development. However, the mechanisms underlying PcG recruitment in mammals remain unclear since few regulatory sites have been identified. We report two novel prospective PcG-dependent regulatory elements within the human HOXB and HOXC clusters and compare their repressive activities to a previously identified element in the HOXD cluster. These regions recruited the PcG proteins BMI1 and SUZ12 to a reporter construct in mesenchymal stem cells and conferred repression that was dependent upon PcG expression. Furthermore, we examined the potential of two DNA-binding proteins, JARID2 and YY1, to regulate PcG activity at these three elements. JARID2 has differential requirements, whereas YY1 appears to be required for repressive activity at all 3 sites. We conclude that distinct elements of the mammalian HOX clusters can recruit components of the PcG complexes and confer repression, similar to what has been seen in Drosophila. These elements, however, have diverse requirements for binding factors, which, combined with previous data on other loci, speaks to the complexity of PcG targeting in mammals.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Células-Tronco Mesenquimais/metabolismo , Família Multigênica , Proteínas do Grupo Polycomb/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Genes Homeobox , Humanos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/genética , Elementos Reguladores de Transcrição , Transcrição Gênica
10.
Genome Res ; 18(10): 1554-61, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18723689

RESUMO

The distribution of nucleosomes along the genome is a significant aspect of chromatin structure and is thought to influence gene regulation through modulation of DNA accessibility. However, properties of nucleosome organization remain poorly understood, particularly in mammalian genomes. Toward this goal we used tiled microarrays to identify stable nucleosome positions along the HOX gene clusters in human cell lines. We show that nucleosome positions exhibit sequence properties and long-range organization that are different from those characterized in other organisms. Despite overall variability of internucleosome distances, specific loci contain regular nucleosomal arrays with 195-bp periodicity. Moreover, such arrays tend to occur preferentially toward the 3' ends of genes. Through comparison of different cell lines, we find that active transcription is correlated with increased positioning of nucleosomes, suggesting an unexpected role for transcription in the establishment of well-positioned nucleosomes.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio/genética , Nucleossomos/metabolismo , Cromatina/metabolismo , Células HeLa , Humanos , Células K562 , Nucleossomos/química
11.
Cell ; 129(7): 1257-9, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17604716

RESUMO

It is not clear to what extent noncoding RNAs regulate the homeobox (HOX) genes that encode key regulators of development in the embryo. In this issue, Rinn et al. (2007) characterize noncoding RNAs that regulate HOX genes and discover one, HOTAIR, that unexpectedly regulates a HOX gene cluster on a different chromosome than the HOX cluster that encodes it.


Assuntos
Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , RNA não Traduzido/genética , Animais , Metilação de DNA , Epigênese Genética/genética , Humanos , Elementos Reguladores de Transcrição/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
12.
Immunity ; 19(4): 479-89, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14563313

RESUMO

Somatic hypermutation (SHM) requires selective targeting of the mutational machinery to the variable region of the immunoglobulin heavy chain gene. The induction of SHM in the BL2 cell line upon costimulation is associated with hyperacetylation of the chromatin at the variable region but not at the constant region. The V region-restricted histone hyperacetylation resulting from costimulation occurs independent of AID expression and mutation. Interestingly, costimulation in the presence of Trichostatin A causes hyperacetylation of histones associated with the constant region and extends mutations to the constant region. Under this condition, promoter proximal mutations are observed in the variable region as well. The overexpression of AID results in a similar deregulation of mutational targeting. Our results indicate that the stimulation of SHM in BL2 cells activates two independent pathways resulting in histone modifications that permit induced levels of AID to selectively target the variable region for mutation.


Assuntos
Cromatina/fisiologia , Região Variável de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina , Acetilação , Animais , Genes de Imunoglobulinas , Histonas/metabolismo , Humanos , Camundongos , Testes de Precipitina
13.
Nature ; 415(6873): 802-6, 2002 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-11823785

RESUMO

The production of high-affinity protective antibodies requires somatic hypermutation (SHM) of the antibody variable (V)-region genes. SHM is characterized by a high frequency of point mutations that occur only during the centroblast stage of B-cell differentiation. Activation-induced cytidine deaminase (AID), which is expressed specifically in germinal-centre centroblasts, is required for this process, but its exact role is unknown. Here we show that AID is required for SHM in the centroblast-like Ramos cells, and that expression of AID is sufficient to induce SHM in hybridoma cells, which represent a later stage of B-cell differentiation that does not normally undergo SHM. In one hybridoma, mutations were exclusively in G*C base pairs that were mostly within RGYW or WRCY motifs, suggesting that AID has primary responsibility for mutations at these nucleotides. The activation of SHM in hybridomas indicates that AID does not require other centroblast-specific cofactors to induce SHM, suggesting either that it functions alone or that the factors it requires are expressed at other stages of B-cell differentiation.


Assuntos
Linfócitos B/enzimologia , Linfócitos B/imunologia , Citidina Desaminase/metabolismo , Hibridomas/enzimologia , Hibridomas/imunologia , Ativação Linfocitária , Hipermutação Somática de Imunoglobulina/genética , Linfócitos B/citologia , Linfócitos B/metabolismo , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Códon sem Sentido/genética , Análise Mutacional de DNA , Indução Enzimática , Sequência Rica em GC/genética , Humanos , Hibridomas/citologia , Hibridomas/metabolismo , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Dados de Sequência Molecular , RNA Mensageiro/análise , RNA Mensageiro/genética , Transfecção
14.
Nat Immunol ; 5(2): 224-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14716311

RESUMO

The generation of protective antibodies requires somatic hypermutation (SHM) and class-switch recombination (CSR) of immunoglobulin genes. Here we show that mice mutant for exonuclease 1 (Exo1), which participates in DNA mismatch repair (MMR), have decreased CSR and changes in the characteristics of SHM similar to those previously observed in mice mutant for the MMR protein Msh2. Exo1 is thus the first exonuclease shown to be involved in SHM and CSR. The phenotype of Exo1(-/-) mice and the finding that Exo1 and Mlh1 are physically associated with mutating variable regions support the idea that Exo1 and MMR participate directly in SHM and CSR.


Assuntos
Exodesoxirribonucleases/genética , Switching de Imunoglobulina , Hipermutação Somática de Imunoglobulina , Animais , Formação de Anticorpos/genética , Pareamento Incorreto de Bases , Linhagem Celular , Reparo do DNA , Enzimas Reparadoras do DNA , Exodesoxirribonucleases/deficiência , Humanos , Camundongos , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA