Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Korean J Radiol ; 24(1): 51-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36606620

RESUMO

OBJECTIVE: To develop and test a machine learning model for classifying human papillomavirus (HPV) status of patients with oropharyngeal squamous cell carcinoma (OPSCC) using 18F-fluorodeoxyglucose (18F-FDG) PET-derived parameters in derived parameters and an appropriate combination of machine learning methods in patients with OPSCC. MATERIALS AND METHODS: This retrospective study enrolled 126 patients (118 male; mean age, 60 years) with newly diagnosed, pathologically confirmed OPSCC, that underwent 18F-FDG PET-computed tomography (CT) between January 2012 and February 2020. Patients were randomly assigned to training and internal validation sets in a 7:3 ratio. An external test set of 19 patients (16 male; mean age, 65.3 years) was recruited sequentially from two other tertiary hospitals. Model 1 used only PET parameters, Model 2 used only clinical features, and Model 3 used both PET and clinical parameters. Multiple feature transforms, feature selection, oversampling, and training models are all investigated. The external test set was used to test the three models that performed best in the internal validation set. The values for area under the receiver operating characteristic curve (AUC) were compared between models. RESULTS: In the external test set, ExtraTrees-based Model 3, which uses two PET-derived parameters and three clinical features, with a combination of MinMaxScaler, mutual information selection, and adaptive synthetic sampling approach, showed the best performance (AUC = 0.78; 95% confidence interval, 0.46-1). Model 3 outperformed Model 1 using PET parameters alone (AUC = 0.48, p = 0.047) and Model 2 using clinical parameters alone (AUC = 0.52, p = 0.142) in predicting HPV status. CONCLUSION: Using oversampling and mutual information selection, an ExtraTree-based HPV status classifier was developed by combining metabolic parameters derived from 18F-FDG PET/CT and clinical parameters in OPSCC, which exhibited higher performance than the models using either PET or clinical parameters alone.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas/diagnóstico por imagem , Fluordesoxiglucose F18 , Papillomavirus Humano , Aprendizado de Máquina , Neoplasias Orofaríngeas/diagnóstico , Infecções por Papillomavirus/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tomografia Computadorizada por Raios X , Feminino
2.
Nanoscale Res Lett ; 12(1): 353, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28511534

RESUMO

We investigate the ferroelectric state of a tetragonal BiFeO3 thin film grown on a LaAlO3 (001) substrate using an optical second harmonic generation (SHG) microscope. Whereas the ferroelectric state of this material hosts nanometer-sized domains which again form micrometer-sized domains of four different configurations, we could figure out the characteristic features of each domain from the SHG mapping with various sizes of the probe beam, i.e., from 0.7 to 3.9 µm in its diameter. In particular, we demonstrate that a single micrometer-sized domain contributes to the SHG as a coherent summation of the constituent nanometer-sized domains, and multi-micrometer-sized domains contribute to the SHG as an incoherent summation of each micro-domain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA