Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 542(7641): 307-312, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28178233

RESUMO

Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.


Assuntos
Chenopodium quinoa/genética , Genoma de Planta/genética , Processamento Alternativo/genética , Diploide , Evolução Molecular , Pool Gênico , Anotação de Sequência Molecular , Mutação , Poliploidia , Saponinas/biossíntese , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
3.
Nucleic Acids Res ; 46(11): 5547-5560, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29718303

RESUMO

T follicular helper (Tfh) cell-derived signals promote activation and proliferation of antigen-primed B cells. It remains unclear whether epigenetic regulation is involved in the B cell responses to Tfh cell-derived signals. Here, we demonstrate that Tfh cell-mimicking signals induce the expression of histone demethylases KDM4A and KDM4C, and the concomitant global down-regulation of their substrates, H3K9me3/me2, in B cells. Depletion of KDM4A and KDM4C potentiates B cell activation and proliferation in response to Tfh cell-derived signals. ChIP-seq and de novo motif analysis reveals NF-κB p65 as a binding partner of KDM4A and KDM4C. Their co-targeting to Wdr5, a MLL complex member promoting H3K4 methylation, up-regulates cell cycle inhibitors Cdkn2c and Cdkn3. Thus, Tfh cell-derived signals trigger KDM4A/KDM4C - WDR5 - Cdkn2c/Cdkn3 cascade in vitro, an epigenetic mechanism regulating proper proliferation of activated B cells. This pathway is dysregulated in B cells from systemic lupus erythematosus patients and may represent a pathological link.


Assuntos
Linfócitos B/imunologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Epigênese Genética/genética , Peptídeos e Proteínas de Sinalização Intracelular , Lúpus Eritematoso Sistêmico/patologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ligação Proteica/genética , Linfócitos T Auxiliares-Indutores/imunologia , Regulação para Cima/genética
4.
J Exp Bot ; 69(10): 2659-2675, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29474581

RESUMO

Abiotic and biotic stresses limit crop productivity. Exposure to a non-lethal stress, referred to as priming, can allow plants to survive subsequent and otherwise lethal conditions; the priming effect persists even after a prolonged stress-free period. However, the molecular mechanisms underlying priming are not fully understood. Here, we investigated the molecular basis of heat-shock memory and the role of priming in Arabidopsis thaliana. Comprehensive analysis of transcriptome-wide changes in gene expression and alternative splicing in primed and non-primed plants revealed that alternative splicing functions as a novel component of heat-shock memory. We show that priming of plants with a non-lethal heat stress results in de-repression of splicing after a second exposure to heat stress. By contrast, non-primed plants showed significant repression of splicing. These observations link 'splicing memory' to the ability of plants to survive subsequent and otherwise lethal heat stress. This newly discovered priming-induced splicing memory may represent a general feature of heat-stress responses in plants and other organisms as many of the key components are conserved among eukaryotes. Furthermore, this finding could facilitate the development of novel approaches to improve plant survival under extreme heat stress.


Assuntos
Processamento Alternativo/fisiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Transcriptoma , Arabidopsis/genética , Resposta ao Choque Térmico
5.
Proc Natl Acad Sci U S A ; 108(8): 3306-11, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21300882

RESUMO

A balance between gene expression stability and evolvability is essential for the long-term maintenance of a living system. In this paper, we studied whether the genetic and epigenetic properties of the promoter affect gene expression variability. We hypothesized that upstream distance and orientation (head-to-head or head-to-tail) are important for the promoter architecture and gene expression variability. We found that in budding yeast genes with a short upstream distance tend to have low gene expression variability, and their promoter is flanked by strongly positioned nucleosomes and tends to have low nucleosome occupancy. These observations suggest that in vivo positioning of the flanking nucleosomes facilitates stable nucleosome depletion at the core promoter region and enhances gene expression stability. Head-to-head genes have, on average, lower gene expression variability, greater nucleosome depletion at the core promoter region, and more strongly positioned nucleosomes that flank the core promoter than do head-to-tail genes. These observations hold for diverse eukaryotes. In complex organisms such as mammals, only a small fraction of head-to-tail genes have retained a short upstream distance, probably because the promoter may not be flanked by a strongly positioned nucleosome on the upstream side.


Assuntos
Regulação Fúngica da Expressão Gênica , Variação Genética , Genoma Fúngico , Regiões Promotoras Genéticas , Saccharomycetales/genética , Análise por Conglomerados , Epigenômica , Nucleossomos/genética
6.
Mol Biol Evol ; 29(7): 1757-67, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22319170

RESUMO

Histone modification is an important mechanism of gene regulation in eukaryotes. Why many histone modifications can be stably maintained in the midst of genetic and environmental changes is a fundamental question in evolutionary biology. We obtained genome-wide profiles of three histone marks, H3 lysine 4 tri-methylation (H3K4me3), H3 lysine 4 mono-methylation (H3K4me1), and H3 lysine 27 acetylation (H3K27ac), for several cell types from human and mouse. We identified histone modifications that were stable among different cell types in human and histone modifications that were evolutionarily conserved between mouse and human in the same cell type. We found that histone modifications that were stable among cell types were also likely to be conserved between species. This trend was consistently observed in promoter, intronic, and intergenic regions for all of the histone marks tested. Importantly, the trend was observed regardless of the expression breadth of the nearby gene, indicating that slow evolution of housekeeping genes was not the major reason for the correlation. These regions showed distinct genetic and epigenetic properties, such as clustered transcription factor binding sites (TFBSs), high GC content, and CTCF binding at flanking sides. Based on our observations, we proposed that TFBS clustering in or near a histone modification plays a significant role in stabilizing and conserving the histone modification because TFBS clustering promotes TFBS conservation, which in turn promotes histone modification conservation. In summary, the results of this study support the view that in mammalian genomes a common mechanism maintains histone modifications against both genetic and environmental (cellular) changes.


Assuntos
Evolução Biológica , Código das Histonas , Histonas/metabolismo , Animais , Fator de Ligação a CCCTC , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Fígado/metabolismo , Camundongos , Proteínas Repressoras/metabolismo
7.
Sci Rep ; 12(1): 11264, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787631

RESUMO

Pre-exposing (priming) plants to mild, non-lethal elevated temperature improves their tolerance to a later higher-temperature stress (triggering stimulus), which is of great ecological importance. 'Thermomemory' is maintaining this tolerance for an extended period of time. NAM/ATAF1/2/CUC2 (NAC) proteins are plant-specific transcription factors (TFs) that modulate responses to abiotic stresses, including heat stress (HS). Here, we investigated the potential role of NACs for thermomemory. We determined the expression of 104 Arabidopsis NAC genes after priming and triggering heat stimuli, and found ATAF1 expression is strongly induced right after priming and declines below control levels thereafter during thermorecovery. Knockout mutants of ATAF1 show better thermomemory than wild type, revealing a negative regulatory role. Differential expression analyses of RNA-seq data from ATAF1 overexpressor, ataf1 mutant and wild-type plants after heat priming revealed five genes that might be priming-associated direct targets of ATAF1: AT2G31260 (ATG9), AT2G41640 (GT61), AT3G44990 (XTH31), AT4G27720 and AT3G23540. Based on co-expression analyses applied to the aforementioned RNA-seq profiles, we identified ANAC055 to be transcriptionally co-regulated with ATAF1. Like ataf1, anac055 mutants show improved thermomemory, revealing a potential co-control of both NAC TFs over thermomemory. Our data reveals a core importance of two NAC transcription factors, ATAF1 and ANAC055, for thermomemory.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Elife ; 4: e06974, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26175406

RESUMO

The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga.


Assuntos
Alveolados/genética , DNA de Algas/química , DNA de Algas/genética , Evolução Molecular , Análise de Sequência de DNA , Perfilação da Expressão Gênica , Dados de Sequência Molecular
9.
Nat Commun ; 3: 1004, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22893128

RESUMO

Cancer cells evolve from normal cells by somatic mutations and natural selection. Comparing the evolution of cancer cells and that of organisms can elucidate the genetic basis of cancer. Here we analyse somatic mutations in >400 cancer genomes. We find that the frequency of somatic single-nucleotide variations increases with replication time during the S phase much more drastically than germ-line single-nucleotide variations and somatic large-scale structural alterations, including amplifications and deletions. The ratio of nonsynonymous to synonymous single-nucleotide variations is higher for cancer cells than for germ-line cells, suggesting weaker purifying selection against somatic mutations. Among genes with recurrent mutations only cancer driver genes show evidence of strong positive selection, and late-replicating regions are depleted of cancer driver genes, although enriched for recurrently mutated genes. These observations show that replication timing has a prominent role in shaping the single-nucleotide variation landscape of cancer cells.


Assuntos
Período de Replicação do DNA , Variação Genética , Genoma Humano , Mutação , Neoplasias/genética , Nucleotídeos/genética , Polimorfismo de Nucleotídeo Único , Replicação do DNA , Evolução Molecular , Células Germinativas/citologia , Humanos , Proteínas/genética
10.
PLoS One ; 5(8): e12158, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20805879

RESUMO

BACKGROUND: Gene order in eukaryotic genomes is not random. Genes showing similar expression (coexpression) patterns are often clustered along the genome. The goal of this study is to characterize coexpression clustering in mammalian genomes and to investigate the underlying mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We detect clustering of coexpressed genes across multiple scales, from neighboring genes to chromosomal domains that span tens of megabases and, in some cases, entire chromosomes. Coexpression domains may be positively or negatively correlated with other domains, within and between chromosomes. We find that long-range expression domains are associated with gene density, which in turn is related to physical organization of the chromosomes within the nucleus. We show that gene expression changes between healthy and diseased tissue samples occur in a gene density-dependent manner. CONCLUSIONS/SIGNIFICANCE: We demonstrate that coexpression domains exist across multiple scales. We identify potential mechanisms for short-range as well as long-range coexpression domains. We provide evidence that the three-dimensional architecture of the chromosomes may underlie long-range coexpression domains. Chromosome territory reorganization may play a role in common human diseases such as Alzheimer's disease and psoriasis.


Assuntos
Perfilação da Expressão Gênica , Genômica/métodos , Animais , Linhagem Celular Tumoral , Cromossomos de Mamíferos/genética , Doença/genética , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos
11.
Cancer Res ; 69(10): 4454-60, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19435904

RESUMO

Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. Whereas chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double-strand break repair in suppression of oncogenic genome instability, the genomic elements required for chromosome rearrangements, especially complex lesions, have not been elucidated. Using a mouse model of B-lineage lymphoma, characterized by complicon formation involving the immunoglobulin heavy chain (Igh) locus and the c-myc oncogene, we have now investigated the requirement for specific genomic segments as donors for complex rearrangements. We now show that specific DNA double-strand breaks, occurring within a narrow segment of Igh, are necessary to initiate complicon formation. By contrast, neither specific DNA breaks nor the powerful intronic enhancer Emu are required for complicon-independent oncogenesis. This study is the first to delineate mechanisms of complex versus simple instability and the first to identify specific chromosomal elements required for complex chromosomal aberrations. These findings will illuminate genomic cancer susceptibility and risk factors.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Reparo do DNA , Amplificação de Genes , Rearranjo Gênico , Genes myc , Cadeias Pesadas de Imunoglobulinas/genética , Linfócitos/fisiologia , Linfoma de Células B/genética , Translocação Genética , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Região de Junção de Imunoglobulinas/genética , Linfoma de Células B/epidemiologia , Linfoma de Células B/imunologia , Camundongos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA