Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cell Biol ; 18(1): 16, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28335714

RESUMO

BACKGROUND: In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. RESULTS: The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. CONCLUSIONS: We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.


Assuntos
Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Morfogênese , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Testículo/embriologia , Animais , Drosophila melanogaster/enzimologia , Evolução Molecular , Voo Animal/fisiologia , Técnicas de Silenciamento de Genes , Genes de Insetos , Proteínas de Fluorescência Verde/metabolismo , Masculino , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Modelos Biológicos , Músculo Esquelético/metabolismo , Mutação/genética , Especificidade de Órgãos , Fenótipo , Filogenia , Multimerização Proteica , Subunidades Proteicas/genética , Interferência de RNA , Espermátides/metabolismo , Espermatogênese
2.
Elife ; 82019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31414984

RESUMO

Innovations in metazoan development arise from evolutionary modification of gene regulatory networks (GRNs). We report widespread cryptic variation in the requirement for two key regulatory inputs, SKN-1/Nrf2 and MOM-2/Wnt, into the C. elegans endoderm GRN. While some natural isolates show a nearly absolute requirement for these two regulators, in others, most embryos differentiate endoderm in their absence. GWAS and analysis of recombinant inbred lines reveal multiple genetic regions underlying this broad phenotypic variation. We observe a reciprocal trend, in which genomic variants, or knockdown of endoderm regulatory genes, that result in a high SKN-1 requirement often show low MOM-2/Wnt requirement and vice-versa, suggesting that cryptic variation in the endoderm GRN may be tuned by opposing requirements for these two key regulatory inputs. These findings reveal that while the downstream components in the endoderm GRN are common across metazoan phylogeny, initiating regulatory inputs are remarkably plastic even within a single species.


Assuntos
Proteínas de Caenorhabditis elegans/biossíntese , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Progranulinas/biossíntese , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Variação Genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo
3.
Genetics ; 167(2): 707-23, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15238523

RESUMO

Male gametes are produced throughout reproductive life by a classic stem cell mechanism. However, little is known about the molecular mechanisms for lineage production that maintain male germ-line stem cell (GSC) populations, regulate mitotic amplification divisions, and ensure germ cell differentiation. Here we utilize the Drosophila system to identify genes that cause defects in the male GSC lineage when forcibly expressed. We conducted a gain-of-function screen using a collection of 2050 EP lines and found 55 EP lines that caused defects at early stages of spermatogenesis upon forced expression either in germ cells or in surrounding somatic support cells. Most strikingly, our analysis of forced expression indicated that repression of bag-of-marbles (bam) expression in male GSC is important for male GSC survival, while activity of the TGF beta signal transduction pathway may play a permissive role in maintenance of GSCs in Drosophila testes. In addition, forced activation of the TGF beta signal transduction pathway in germ cells inhibits the transition from the spermatogonial mitotic amplification program to spermatocyte differentiation.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Fator de Crescimento Transformador beta/fisiologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Mutação em Linhagem Germinativa , Masculino , Transdução de Sinais , Espermatócitos/citologia , Espermatogônias/citologia , Testículo/fisiologia
4.
Development ; 129(19): 4523-34, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12223409

RESUMO

Germ cells normally differentiate in the context of encapsulating somatic cells. However, the mechanisms that set up the special relationship between germ cells and somatic support cells and the signals that mediate the crucial communications between the two cell types are poorly understood. We show that interactions between germ cells and somatic support cells in Drosophila depend on wild-type function of the stet gene. In males, stet acts in germ cells to allow their encapsulation by somatic cyst cells and is required for germ cell differentiation. In females, stet function allows inner sheath cells to enclose early germ cells correctly at the tip of the germarium. stet encodes a homolog of rhomboid, a component of the epidermal growth factor receptor signaling pathway involved in ligand activation in the signaling cell. The stet mutant phenotype suggests that stet facilitates signaling from germ cells to the epidermal growth factor receptor on somatic cells, resulting in the encapsulation of germ cells by somatic support cells. The micro-environment provided by the surrounding somatic cells may, in turn, regulate differentiation of the germ cells they enclose.


Assuntos
Proteínas de Drosophila/metabolismo , Óvulo/fisiologia , Proteínas Quinases , Transdução de Sinais , Espermatozoides/fisiologia , Animais , Biomarcadores , Diferenciação Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Proteínas do Olho/genética , Feminino , Masculino , Proteínas de Membrana/genética , Óvulo/citologia , Óvulo/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores de Superfície Celular , Receptores de Peptídeos de Invertebrados/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo , Proteína Wnt1
5.
Development ; 129(22): 5171-80, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12399309

RESUMO

Development of the vulva in C. elegans is mediated by the combinatorial action of several convergent regulatory inputs, three of which, the Ras, Wnt and Rb-related pathways, act by regulating expression of the lin-39 Hox gene. LIN-39 specifies cell fates and regulates cell fusion in the mid-body region, leading to formation of the vulva. In the lateral seam epidermis, differentiation and cell fusion have been shown to be regulated by two GATA-type transcription factors, ELT-5 and -6. We report that ELT-5 is encoded by the egl-18 gene, which was previously shown to promote formation of a functional vulva. Furthermore, we find that EGL-18 (ELT-5), and its paralogue ELT-6, are redundantly required to regulate cell fates and fusion in the vulval primordium and are essential to form a vulva. Elimination of egl-18 and elt-6 activity results in arrest by the first larval stage; however, in animals rescued for this larval lethality by expression of ELT-6 in non-vulval cells, the post-embryonic cells (P3.p-P8.p) that normally become vulval precursor cells often fuse with the surrounding epidermal syncytium or undergo fewer than normal cell divisions, reminiscent of lin-39 mutants. Moreover, egl-18/elt-6 reporter gene expression in the developing vulva is attenuated in lin-39(rf) mutants, and overexpression of egl-18 can partially rescue the vulval defects caused by reduced lin-39 activity. LIN-39/CEH-20 heterodimers bind two consensus HOX/PBC sites in a vulval enhancer region of egl-18/elt-6, one of which is essential for vulval expression of egl-18/elt-6 reporter constructs. These findings demonstrate that the EGL-18 and ELT-6 GATA factors are essential, genetically redundant regulators of cell fates and fusion in the developing vulva and are apparent direct transcriptional targets of the LIN-39 Hox protein.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Vulva/crescimento & desenvolvimento , Animais , Sítios de Ligação , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/fisiologia , Fusão Celular , Proteínas de Ligação a DNA/genética , Dimerização , Elementos Facilitadores Genéticos , Feminino , Fatores de Transcrição GATA , Proteínas de Fluorescência Verde , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Neurônios/citologia , Neurônios/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética , Vulva/anormalidades , Vulva/metabolismo
6.
Development ; 129(10): 2529-39, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11973283

RESUMO

Germ cells require intimate associations and signals from the surrounding somatic cells throughout gametogenesis. The zero population growth (zpg) locus of Drosophila encodes a germline-specific gap junction protein, Innexin 4, that is required for survival of differentiating early germ cells during gametogenesis in both sexes. Animals with a null mutation in zpg are viable but sterile and have tiny gonads. Adult zpg-null gonads contain small numbers of early germ cells, resembling stem cells or early spermatogonia or oogonia, but lack later stages of germ cell differentiation. In the male, Zpg protein localizes to the surface of spermatogonia, primarily on the sides adjacent to the somatic cyst cells. In the female, Zpg protein localizes to germ cell surfaces, both those adjacent to surrounding somatic cells and those adjacent to other germ cells. We propose that Zpg-containing gap junctional hemichannels in the germ cell plasma membrane may connect with hemichannels made of other innexin isoforms on adjacent somatic cells. Gap junctional intercellular communication via these channels may mediate passage of crucial small molecules or signals between germline and somatic support cells required for survival and differentiation of early germ cells in both sexes.


Assuntos
Conexinas/genética , Proteínas de Drosophila/genética , Drosophila/genética , Oócitos/fisiologia , Espermatozoides/fisiologia , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Membrana Celular/metabolismo , Sobrevivência Celular/genética , Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Junções Comunicantes/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA