Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31953342

RESUMO

The upper green layer of the chlorophototrophic microbial mats associated with the alkaline siliceous hot springs of Yellowstone National Park consists of oxygenic cyanobacteria (Synechococcus spp.), anoxygenic Roseiflexus spp., and several other anoxygenic chlorophototrophs. Synechococcus spp. are believed to be the main fixers of inorganic carbon (Ci), but some evidence suggests that Roseiflexus spp. also contribute to inorganic carbon fixation during low-light, anoxic morning periods. Contributions of other phototrophic taxa have not been investigated. In order to follow the pathway of Ci incorporation into different taxa, mat samples were incubated with [13C]bicarbonate for 3 h during the early-morning, low-light anoxic period. Extracted proteins were treated with trypsin and analyzed by mass spectrometry, leading to peptide identifications and peptide isotopic profile signatures containing evidence of 13C label incorporation. A total of 25,483 peptides, corresponding to 7,221 proteins, were identified from spectral features and associated with mat taxa by comparison to metagenomic assembly sequences. A total of 1,417 peptides, derived from 720 proteins, were detectably labeled with 13C. Most 13C-labeled peptides were derived from proteins of Synechococcus spp. and Roseiflexus spp. Chaperones and proteins of carbohydrate metabolism were most abundantly labeled. Proteins involved in photosynthesis, Ci fixation, and N2 fixation were also labeled in Synechococcus spp. Importantly, most proteins of the 3-hydroxypropionate bi-cycle for Ci fixation in Roseiflexus spp. were labeled, establishing that members of this taxocene contribute to Ci fixation. Other taxa showed much lower [13C]bicarbonate incorporation.IMPORTANCE Yellowstone hot spring mats have been studied as natural models for understanding microbial community ecology and as modern analogs of stromatolites, the earliest community fossils on Earth. Stable-isotope probing of proteins (Pro-SIP) permitted short-term interrogation of the taxa that are involved in the important process of light-driven Ci fixation in this highly active community and will be useful in linking other metabolic processes to mat taxa. Here, evidence is presented that Roseiflexus spp., which use the 3-hydroxypropionate bi-cycle, are active in Ci fixation. Because this pathway imparts a lower degree of selection of isotopically heavy Ci than does the Calvin-Benson-Bassham cycle, the results suggest a mechanism to explain why the natural abundance of 13C in mat biomass is greater than expected if only the latter pathway were involved. Understanding how mat community members influence the 13C/12C ratios of mat biomass will help geochemists interpret the 13C/12C ratios of organic carbon in the fossil record.


Assuntos
Compostos Inorgânicos de Carbono/metabolismo , Chloroflexi/metabolismo , Fontes Termais/microbiologia , Microbiota , Synechococcus/metabolismo
2.
Appl Microbiol Biotechnol ; 103(16): 6851-6852, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31302709

RESUMO

In our original published manuscript entitled "Metagenome to phenome approach enables isolation and genomics characterization of Kalamiella piersonii gen. nov., sp. nov. from the International Space Station" (Singh et al. 2019), we found a taxonomic description format error: As per the Rule 27.

3.
Appl Microbiol Biotechnol ; 103(11): 4483-4497, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31011775

RESUMO

Several evolutionarily distinct, near full-length draft metagenome-resolved genomes (MRG), were assembled from sequences recovered from the International Space Station (ISS) environments. The retrieval of MRGs facilitated the exploration of a large collection of archived strains (~ 500 isolates) and assisted in isolating seven related strains. The whole genome sequences (WGS) of seven ISS strains exhibited 100% identity to the 4.85 × 106 bp of four MRGs. The "metagenome to phenome" approach led to the description of a novel bacterial genus from the ISS samples. The phylogenomics and traditional taxonomic approaches suggested that these seven ISS strains and four MRGs were not phylogenetically affiliated to any validly described genera of the family Erwiniaceae, but belong to a novel genus with the proposed name Kalamiella. Comparative genomic analyses of Kalamiella piersonii strains and MRGs showed genes associated with carbohydrate (348 genes), amino acid (384), RNA (59), and protein (214) metabolisms; membrane transport systems (108), pathways for biosynthesis of cofactors, vitamins, prosthetic groups, and pigments (179); as well as mechanisms for virulence, disease, and defense (50). Even though Kalamiella genome annotation and disc diffusion tests revealed multidrug resistance, the PathogenFinder algorithm predicted that K. piersonii strains are not human pathogens. This approach to isolating microbes allows for the characterization of functional pathways and their potential virulence properties that can directly affect human health. The isolation of novel strains from the ISS has broad applications in microbiology, not only because of concern for astronaut health but it might have a great potential for biotechnological relevance. The metagenome to phenome approach will help to improve our understanding of complex metabolic networks that control fundamental life processes under microgravity and in deep space.


Assuntos
Microbiologia Ambiental , Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Filogenia , Astronave , Técnicas de Tipagem Bacteriana , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Humanos , Metagenômica , Sequenciamento Completo do Genoma
4.
Microbiome ; 11(1): 125, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264385

RESUMO

BACKGROUND: Several investigations on the microbial diversity and functional properties of the International Space Station (ISS) environment were carried out to understand the influence of spaceflight conditions on the microbial population. However, metagenome-assembled genomes (MAGs) of ISS samples are yet to be generated and subjected to various genomic analyses, including phylogenetic affiliation, predicted functional pathways, antimicrobial resistance, and virulence characteristics. RESULTS: In total, 46 MAGs were assembled from 21 ISS environmental metagenomes, in which metaSPAdes yielded 20 MAGs and metaWRAP generated 26 MAGs. Among 46 MAGs retrieved, 18 bacterial species were identified, including one novel genus/species combination (Kalamiella piersonii) and one novel bacterial species (Methylobacterium ajmalii). In addition, four bins exhibited fungal genomes; this is the first-time fungal genomes were assembled from ISS metagenomes. Phylogenetic analyses of five bacterial species showed ISS-specific evolution. The genes pertaining to cell membranes, such as transmembrane transport, cell wall organization, and regulation of cell shape, were enriched. Variations in the antimicrobial-resistant (AMR) and virulence genes of the selected 20 MAGs were characterized to predict the ecology and evolution of biosafety level (BSL) 2 microorganisms in space. Since microbial virulence increases in microgravity, AMR gene sequences of MAGs were compared with genomes of respective ISS isolates and corresponding type strains. Among these 20 MAGs characterized, AMR genes were more prevalent in the Enterobacter bugandensis MAG, which has been predominantly isolated from clinical samples. MAGs were further used to analyze if genes involved in AMR and biofilm formation of viable microbes in ISS have variation due to generational evolution in microgravity and radiation pressure. CONCLUSIONS: Comparative analyses of MAGs and whole-genome sequences of related ISS isolates and their type strains were characterized to understand the variation related to the microbial evolution under microgravity. The Pantoea/Kalamiella strains have the maximum single-nucleotide polymorphisms found within the ISS strains examined. This may suggest that Pantoea/Kalamiella strains are much more subjective to microgravity changes. The reconstructed genomes will enable researchers to study the evolution of genomes under microgravity and low-dose irradiation compared to the evolution of microbes here on Earth. Video Abstract.


Assuntos
Anti-Infecciosos , Gammaproteobacteria , Voo Espacial , Metagenoma , Filogenia , Bactérias , Gammaproteobacteria/genética , Metagenômica
5.
PLoS One ; 18(3): e0282428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36947490

RESUMO

The National Aeronautics and Space Administration (NASA) has been monitoring the microbial burden of spacecraft since the 1970's Viking missions. Originally culture-based and then focused 16S sequencing techniques were used, but we have now applied whole metagenomic sequencing to a variety of cleanroom samples at the Jet Propulsion Lab (JPL), including the Spacecraft Assembly Facility (SAF) with the goals of taxonomic identification and for functional assignment. Our samples included facility pre-filters, cleanroom vacuum debris, and surface wipes. The taxonomic composition was carried out by three different analysis tools to contrast marker, k-mer, and true alignment approaches. Hierarchical clustering analysis of the data separated vacuum particles from other SAF DNA samples. Vacuum particle samples were the most diverse while DNA samples from the ISO (International Standards Organization) compliant facilities and the SAF were the least diverse; all three were dominated by Proteobacteria. Wipe samples had higher diversity and were predominated by Actinobacteria, including human commensals Cutibacterium acnes and Corynebacterium spp. Taxa identified by the three methods were not identical, supporting the use of multiple methods for metagenome characterization. Likewise, functional annotation was performed using multiple methods. Vacuum particles and SAF samples contained strong signals of the tricarboxylic acid cycle and of amino acid biosynthesis, suggesting that many of the identified microorganisms have the ability to grow in nutrient-limited environments. In total, 18 samples generated high quality metagenome assembled genomes (MAG), which were dominated by Moraxella osloensis or Malassezia restricta. One M. osloensis MAG was assembled into a single circular scaffold and gene annotated. This study includes a rigorous quantitative determination of microbial loads and a qualitative dissection of microbial composition. Assembly of multiple specimens led to greater confidence for the identification of particular species and their predicted functional roles.


Assuntos
Metagenoma , Astronave , Humanos , Bactérias/genética
6.
Astrobiology ; 23(8): 897-907, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37102710

RESUMO

Molecular biology methods and technologies have advanced substantially over the past decade. These new molecular methods should be incorporated among the standard tools of planetary protection (PP) and could be validated for incorporation by 2026. To address the feasibility of applying modern molecular techniques to such an application, NASA conducted a technology workshop with private industry partners, academics, and government agency stakeholders, along with NASA staff and contractors. The technical discussions and presentations of the Multi-Mission Metagenomics Technology Development Workshop focused on modernizing and supplementing the current PP assays. The goals of the workshop were to assess the state of metagenomics and other advanced molecular techniques in the context of providing a validated framework to supplement the bacterial endospore-based NASA Standard Assay and to identify knowledge and technology gaps. In particular, workshop participants were tasked with discussing metagenomics as a stand-alone technology to provide rapid and comprehensive analysis of total nucleic acids and viable microorganisms on spacecraft surfaces, thereby allowing for the development of tailored and cost-effective microbial reduction plans for each hardware item on a spacecraft. Workshop participants recommended metagenomics approaches as the only data source that can adequately feed into quantitative microbial risk assessment models for evaluating the risk of forward (exploring extraterrestrial planet) and back (Earth harmful biological) contamination. Participants were unanimous that a metagenomics workflow, in tandem with rapid targeted quantitative (digital) PCR, represents a revolutionary advance over existing methods for the assessment of microbial bioburden on spacecraft surfaces. The workshop highlighted low biomass sampling, reagent contamination, and inconsistent bioinformatics data analysis as key areas for technology development. Finally, it was concluded that implementing metagenomics as an additional workflow for addressing concerns of NASA's robotic mission will represent a dramatic improvement in technology advancement for PP and will benefit future missions where mission success is affected by backward and forward contamination.


Assuntos
Planetas , Voo Espacial , Estados Unidos , Humanos , Meio Ambiente Extraterreno , Metagenômica , United States National Aeronautics and Space Administration , Astronave , Políticas
7.
Microorganisms ; 11(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38138064

RESUMO

Three strains of thermophilic green sulfur bacteria (GSB) are known; all are from microbial mats in hot springs in Rotorua, New Zealand (NZ) and belong to the species Chlorobaculum tepidum. Here, we describe diverse populations of GSB inhabiting Travel Lodge Spring (TLS) (NZ) and hot springs ranging from 36.1 °C to 51.1 °C in the Republic of the Philippines (PHL) and Yellowstone National Park (YNP), Wyoming, USA. Using targeted amplification and restriction fragment length polymorphism analysis, GSB 16S rRNA sequences were detected in mats in TLS, one PHL site, and three regions of YNP. GSB enrichments from YNP and PHL mats contained small, green, nonmotile rods possessing chlorosomes, chlorobactene, and bacteriochlorophyll c. Partial 16S rRNA gene sequences from YNP, NZ, and PHL mats and enrichments from YNP and PHL samples formed distinct phylogenetic clades, suggesting geographic isolation, and were associated with samples differing in temperature and pH, suggesting adaptations to these parameters. Sequences from enrichments and corresponding mats formed clades that were sometimes distinct, increasing the diversity detected. Sequence differences, monophyly, distribution patterns, and evolutionary simulation modeling support our discovery of at least four new putative moderately thermophilic Chlorobaculum species that grew rapidly at 40 °C to 44 °C.

8.
Front Microbiol ; 13: 777133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558115

RESUMO

Ensuring biological cleanliness while assembling and launching spacecraft is critical for robotic exploration of the solar system. To date, when preventing forward contamination of other celestial bodies, NASA Planetary Protection policies have focused on endospore-forming bacteria while fungi were neglected. In this study, for the first time the mycobiome of two spacecraft assembly facilities at Jet Propulsion Laboratory (JPL) and Kennedy Space Center (KSC) was assessed using both cultivation and sequencing techniques. To facilitate enumeration of viable fungal populations and downstream molecular analyses, collected samples were first treated with chloramphenicol for 24 h and then with propidium monoazide (PMA). Among cultivable fungi, 28 distinct species were observed, 16 at JPL and 16 at KSC facilities, while 13 isolates were potentially novel species. Only four isolated species Aureobasidium melanogenum, Penicillium fuscoglaucum, Penicillium decumbens, and Zalaria obscura were present in both cleanroom facilities, which suggests that mycobiomes differ significantly between distant locations. To better visualize the biogeography of all isolated strains the network analysis was undertaken and confirmed higher abundance of Malassezia globosa and Cyberlindnera jadinii. When amplicon sequencing was performed, JPL-SAF and KSC-PHSF showed differing mycobiomes. Metagenomic fungal reads were dominated by Ascomycota (91%) and Basidiomycota (7.15%). Similar to amplicon sequencing, the number of fungal reads changed following antibiotic treatment in both cleanrooms; however, the opposite trends were observed. Alas, treatment with the antibiotic did not allow for definitive ascribing changes observed in fungal populations between treated and untreated samples in both cleanrooms. Rather, these substantial differences in fungal abundance might be attributed to several factors, including the geographical location, climate and the in-house cleaning procedures used to maintain the cleanrooms. This study is a first step in characterizing cultivable and viable fungal populations in cleanrooms to assess fungal potential as biocontaminants during interplanetary explorations. The outcomes of this and future studies could be implemented in other cleanrooms that require to reduce microbial burden, like intensive care units, operating rooms, or cleanrooms in the semiconducting and pharmaceutical industries.

9.
Microbiol Spectr ; 10(1): e0199421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019675

RESUMO

In an ongoing microbial tracking investigation of the International Space Station (ISS), several Sphingomonas strains were isolated. Based on the 16S rRNA gene sequence, phylogenetic analysis identified the ISS strains as Sphingomonas sanguinis (n = 2) and one strain isolated from the Kennedy Space Center cleanroom (used to assemble various Mars mission spacecraft components) as Sphingomonas paucimobilis. Metagenomic sequence analyses of different ISS locations identified 23 Sphingomonas species. An abundance of shotgun metagenomic reads were detected for S. sanguinis in the location from where the ISS strains were isolated. A complete metagenome-assembled genome was generated from the shotgun reads metagenome, and its comparison with the whole-genome sequences (WGS) of the ISS S. sanguinis isolates revealed that they were highly similar. In addition to the phylogeny, the WGS of these Sphingomonas strains were compared with the WGS of the type strains to elucidate genes that can potentially aid in plant growth promotion. Furthermore, the WGS comparison of these strains with the well-characterized Sphingomonas sp. LK11, an arid desert strain, identified several genes responsible for the production of phytohormones and for stress tolerance. Production of one of the phytohormones, indole-3-acetic acid, was further confirmed in the ISS strains using liquid chromatography-mass spectrometry. Pathways associated with phosphate uptake, metabolism, and solubilization in soil were conserved across all the S. sanguinis and S. paucimobilis strains tested. Furthermore, genes thought to promote plant resistance to abiotic stress, including heat/cold shock response, heavy metal resistance, and oxidative and osmotic stress resistance, appear to be present in these space-related S. sanguinis and S. paucimobilis strains. Characterizing these biotechnologically important microorganisms found on the ISS and harnessing their key features will aid in the development of self-sustainable long-term space missions in the future. IMPORTANCESphingomonas is ubiquitous in nature, including the anthropogenically contaminated extreme environments. Members of the Sphingomonas genus have been identified as potential candidates for space biomining beyond earth. This study describes the isolation and identification of Sphingomonas members from the ISS, which are capable of producing the phytohormone indole-3-acetic acid. Microbial production of phytohormones will help future in situ studies, grow plants beyond low earth orbit, and establish self-sustainable life support systems. Beyond phytohormone production, stable genomic elements of abiotic stress resistance, heavy metal resistance, and oxidative and osmotic stress resistance were identified, rendering the ISS Sphingomonas isolate a strong candidate for biotechnology-related applications.


Assuntos
Genômica , Desenvolvimento Vegetal/fisiologia , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Sphingomonas/fisiologia , Ácidos Indolacéticos , Metagenoma , Metagenômica , Filogenia , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/genética , RNA Ribossômico 16S , Astronave , Sphingomonas/classificação , Sequenciamento Completo do Genoma
10.
Microbiome ; 10(1): 134, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35999570

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) has a detrimental impact on human health on Earth and it is equally concerning in other environments such as space habitat due to microgravity, radiation and confinement, especially for long-distance space travel. The International Space Station (ISS) is ideal for investigating microbial diversity and virulence associated with spaceflight. The shotgun metagenomics data of the ISS generated during the Microbial Tracking-1 (MT-1) project and resulting metagenome-assembled genomes (MAGs) across three flights in eight different locations during 12 months were used in this study. The objective of this study was to identify the AMR genes associated with whole genomes of 226 cultivable strains, 21 shotgun metagenome sequences, and 24 MAGs retrieved from the ISS environmental samples that were treated with propidium monoazide (PMA; viable microbes). RESULTS: We have analyzed the data using a deep learning model, allowing us to go beyond traditional cut-offs based only on high DNA sequence similarity and extending the catalog of AMR genes. Our results in PMA treated samples revealed AMR dominance in the last flight for Kalamiella piersonii, a bacteria related to urinary tract infection in humans. The analysis of 226 pure strains isolated from the MT-1 project revealed hundreds of antibiotic resistance genes from many isolates, including two top-ranking species that corresponded to strains of Enterobacter bugandensis and Bacillus cereus. Computational predictions were experimentally validated by antibiotic resistance profiles in these two species, showing a high degree of concordance. Specifically, disc assay data confirmed the high resistance of these two pathogens to various beta-lactam antibiotics. CONCLUSION: Overall, our computational predictions and validation analyses demonstrate the advantages of machine learning to uncover concealed AMR determinants in metagenomics datasets, expanding the understanding of the ISS environmental microbiomes and their pathogenic potential in humans. Video Abstract.


Assuntos
Microbiota , Astronave , Algoritmos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Aprendizado de Máquina , Metagenômica/métodos , Microbiota/genética
11.
Front Microbiol ; 12: 685254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650522

RESUMO

NASA planetary protection (PP) requires an assessment of the biological contamination of the potential microbial burden on spacecraft destined to explore planetary bodies that may harbor signs of life, like Mars and Europa. To help meet these goals, the performance of multiple metagenomic pipelines were compared and assessed for their ability to detect microbial diversity of a low-biomass clean room environment used to build spacecraft destined to these planetary bodies. Four vendors were chosen to implement their own metagenomic analysis pipeline on the shotgun sequences retrieved from environmental surfaces in the relevant environments at NASA's Jet Propulsion Laboratory. None of the vendors showed the same microbial profile patterns when analyzing same raw dataset since each vendor used different pipelines, which begs the question of the validity of a single pipeline to be recommended for future NASA missions. All four vendors detected species of interest, including spore-forming and extremotolerant bacteria, that have the potential to hitch-hike on spacecraft and contaminate the planetary bodies explored. Some vendors demonstrated through functional analysis of the metagenomes that the molecular mechanisms for spore-formation and extremotolerance were represented in the data. However, relative abundances of these microorganisms varied drastically between vendor analyses, questioning the ability of these pipelines to quantify the number of PP-relevant microorganisms on a spacecraft surface. Metagenomics offers tantalizing access to the genetic and functional potential of a microbial community that may offer NASA a viable method for microbial burden assays for planetary protection purposes. However, future development of technologies such as streamlining the processing of shotgun metagenome sequence data, long read sequencing, and all-inclusive larger curated and annotated microbial genome databases will be required to validate and translate relative abundances into an actionable assessment of PP-related microbes of interest. Additionally, the future development of machine learning and artificial intelligence techniques could help enhance the quality of these metagenomic analyses by providing more accurate identification of the genetic and functional potential of a microbial community.

12.
Microbiol Resour Announc ; 10(13)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795349

RESUMO

The draft whole-genome sequences (WGS) of 30 fungal strains isolated from the International Space Station and belonging to the Penicillium and Aspergillus genera were assembled. The WGS will allow for detailed genomic characterization to determine the possible applications and importance for space and biotechnological industries.

13.
Microbiol Resour Announc ; 10(36): e0065321, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34498924

RESUMO

Heat shock-tolerant microorganisms belonging to the orders Bacillales and Micrococcales were isolated from the Spacecraft Assembly Facility at the Jet Propulsion Laboratory, and 63 draft genome sequences were assembled and identified. Further analyses of these genomes can provide insight into methods for preventing forward contamination.

14.
Microbiol Resour Announc ; 10(17)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927037

RESUMO

Whole-genome sequences were generated from 96 bacterial strains of 14 species that were isolated from International Space Station surfaces during the Microbial Tracking 2 study. Continued characterization of this closed habitat's microbiome enables tracking of the spread and evolution of secondary pathogens, which is vital for astronaut health.

15.
Microbiol Resour Announc ; 10(37): e0075121, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528817

RESUMO

As part of the Microbial Tracking-2 study, 94 fungal strains were isolated from surfaces on the International Space Station, and whole-genome sequences were assembled. Characterization of these draft genomes will allow evaluation of microgravity adaption, risks to human health and spacecraft functioning, and biotechnological applications of fungi.

16.
Microbiome ; 9(1): 82, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795001

RESUMO

BACKGROUND: Clean rooms of the Space Assembly Facility (SAF) at the Jet Propulsion Laboratory (JPL) at NASA are the final step of spacecraft cleaning and assembly before launching into space. Clean rooms have stringent methods of air-filtration and cleaning to minimize microbial contamination for exoplanetary research and minimize the risk of human pathogens, but they are not sterile. Clean rooms make a selective environment for microorganisms that tolerate such cleaning methods. Previous studies have attempted to characterize the microbial cargo through sequencing and culture-dependent protocols. However, there is not a standardized metagenomic workflow nor analysis pipeline for spaceflight hardware cleanroom samples to identify microbial contamination. Additionally, current identification methods fail to characterize and profile the risk of low-abundance microorganisms. RESULTS: A comprehensive metagenomic framework to characterize microorganisms relevant for planetary protection in multiple cleanroom classifications (from ISO-5 to ISO-8.5) and sample types (surface, filters, and debris collected via vacuum devices) was developed. Fifty-one metagenomic samples from SAF clean rooms were sequenced and analyzed to identify microbes that could potentially survive spaceflight based on their microbial features and whether the microbes expressed any metabolic activity or growth. Additionally, an auxiliary testing was performed to determine the repeatability of our techniques and validate our analyses. We find evidence that JPL clean rooms carry microbes with attributes that may be problematic in space missions for their documented ability to withstand extreme conditions, such as psychrophilia and ability to form biofilms, spore-forming capacity, radiation resistance, and desiccation resistance. Samples from ISO-5 standard had lower microbial diversity than those conforming to ISO-6 or higher filters but still carried a measurable microbial load. CONCLUSIONS: Although the extensive cleaning processes limit the number of microbes capable of withstanding clean room condition, it is important to quantify thresholds and detect organisms that can inform ongoing Planetary Protection goals, provide a biological baseline for assembly facilities, and guide future mission planning. Video Abstract.


Assuntos
Metagenômica , Voo Espacial , Ambiente Controlado , Humanos , Metagenoma , Astronave
17.
Front Microbiol ; 11: 77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153516

RESUMO

Previous analyses have shown how diversity among unicellular cyanobacteria inhabiting island-like hot springs is structured relative to physical separation and physiochemical differences among springs, especially at local to regional scales. However, these studies have been limited by the low resolution provided by the molecular markers surveyed. We analyzed large datasets obtained by high-throughput sequencing of a segment of the photosynthesis gene psaA from samples collected in hot springs from geothermal basins in Yellowstone National Park, Montana, and Oregon, all known from previous studies to contain populations of A/B'-lineage Synechococcus. The fraction of identical sequences was greater among springs separated by <50 km than among springs separated by >50 km, and springs separated by >800 km shared sequence variants only rarely. Phylogenetic analyses provided evidence for endemic lineages that could be related to geographic isolation and/or geochemical differences on regional scales. Ecotype Simulation 2 was used to predict putative ecotypes (ecologically distinct populations), and their membership, and canonical correspondence analysis was used to examine the geographical and geochemical bases for variation in their distribution. Across the range of Oregon and Yellowstone, geographical separation explained the largest percentage of the differences in distribution of ecotypes (9.5% correlated to longitude; 9.4% to latitude), with geochemical differences explaining the largest percentage of the remaining differences in distribution (7.4-9.3% correlated to magnesium, sulfate, and sulfide). Among samples within the Greater Yellowstone Ecosystem, geochemical differences significantly explained the distribution of ecotypes (6.5-9.3% correlated to magnesium, boron, sulfate, silicon dioxide, chloride, and pH). Nevertheless, differences in the abundance and membership of ecotypes in Yellowstone springs with similar chemistry suggested that allopatry may be involved even at local scales. Synechococcus populations have diverged both by physical isolation and physiochemical differences, and populations on surprisingly local scales have been evolving independently.

18.
Microbiol Resour Announc ; 9(44)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122406

RESUMO

The draft genome sequences of 29 bacterial isolates belonging to the family Bacillaceae were collected from the International Space Station, assembled, and identified. Further analysis of these sequences will enable us to understand their roles for space and biotechnological applications.

19.
Microbiol Resour Announc ; 9(39)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972947

RESUMO

Nineteen strains from the order Lactobacillales were isolated from the International Space Station and commercial resupply vehicle, and whole-genome sequences (WGS) were generated. WGS would permit the characterization of these potentially pathogenic bacteria that have been adapting to the extreme conditions of the space environment.

20.
Front Microbiol ; 11: 1909, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973700

RESUMO

NASA has made great strides in the past five years to develop a suite of instruments for the International Space Station in order to perform molecular biology in space. However, a key piece of equipment that has been lacking is an instrument that can extract nucleic acids from an array of complex human and environmental samples. The Omics in Space team has developed the µTitan (simulated micro(µ) gravity tested instrument for automated nucleic acid) system capable of automated, streamlined, nucleic acid extraction that is adapted for use under microgravity. The µTitan system was validated using a whole cell microbial reference (WCMR) standard comprised of a suspension of nine bacterial strains, titrated to concentrations that would challenge the performance of the instrument, as well as to determine the detection limits for isolating DNA. Quantitative assessment of system performance was measured by comparing instrument input challenge dose vs recovery by Qubit spectrofluorometry, qPCR, Bioanalyzer, and Next Generation Sequencing. Overall, results indicate that the µTitan system performs equal to or greater than a similar commercially available, earth-based, automated nucleic acid extraction device. The µTitan system was also tested in Yellowstone National Park (YNP) with the WCMR, to mimic a remote setting, with limited resources. The performance of the device at YNP was comparable to that in a laboratory setting. Such a portable, field-deployable, nucleic extraction system will be valuable for environmental microbiology, as well as in health care diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA