Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Glob Chang Biol ; 29(23): 6517-6545, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746862

RESUMO

Coastal saltmarshes are found globally, yet are 25%-50% reduced compared with their historical cover. Restoration is incentivised by the promise that marshes are efficient storers of 'blue' carbon, although the claim lacks substantiation across global contexts. We synthesised data from 431 studies to quantify the benefits of saltmarsh restoration to carbon accumulation and greenhouse gas uptake. The results showed global marshes store approximately 1.41-2.44 Pg carbon. Restored marshes had very low greenhouse gas (GHG) fluxes and rapid carbon accumulation, resulting in a mean net accumulation rate of 64.70 t CO2 e ha-1 year-1 . Using this estimate and potential restoration rates, we find saltmarsh regeneration could result in 12.93-207.03 Mt CO2 e accumulation per year, offsetting the equivalent of up to 0.51% global energy-related CO2 emissions-a substantial amount, considering marshes represent <1% of Earth's surface. Carbon accumulation rates and GHG fluxes varied contextually with temperature, rainfall and dominant vegetation, with the eastern coasts of the USA and Australia particular hotspots for carbon storage. While the study reveals paucity of data for some variables and continents, suggesting need for further research, the potential for saltmarsh restoration to offset carbon emissions is clear. The ability to facilitate natural carbon accumulation by saltmarshes now rests principally on the action of the management-policy community and on financial opportunities for supporting restoration.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Austrália , Carbono , Temperatura , Áreas Alagadas
3.
Glob Chang Biol ; 26(8): 4263-4275, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515077

RESUMO

Range shifts and phenological change are two processes by which organisms respond to environmental warming. Understanding the mechanisms that drive these changes is key for optimal conservation and management. Here we study both processes in the migratory Bewick's swan (Cygnus columbianus bewickii) using different methods, analysing nearly 50 years of resighting data (1970-2017). In this period the wintering area of the Bewick's swans shifted eastwards ('short-stopping') at a rate of ~13 km/year, thereby shortening individual migration distance on an average by 353 km. Concurrently, the time spent at the wintering grounds has reduced ('short-staying') by ~38 days since 1989. We show that individuals are consistent in their migratory timing in winter, indicating that the frequency of individuals with different migratory schedules has changed over time (a generational shift). In contrast, for short-stopping we found evidence for both individual plasticity (individuals decrease their migration distances over their lifetime) and generational shift. Additional analysis of swan resightings with temperature data showed that, throughout the winter, Bewick's swans frequent areas where air temperatures are c. 5.5°C. These areas have also shifted eastwards over time, hinting that climate warming is a contributing factor behind the observed changes in the swans' distribution. The occurrence of winter short-stopping and short-staying suggests that this species is to some extent able to adjust to climate warming, but benefits or repercussions at other times of the annual cycle need to be assessed. Furthermore, these phenomena could lead to changes in abundance in certain areas, with resulting monitoring and conservation implications. Understanding the processes and driving mechanisms behind population changes therefore is important for population management, both locally and across the species range.


Assuntos
Migração Animal , Anseriformes , Animais , Humanos , Estações do Ano , Temperatura
4.
J Exp Biol ; 218(Pt 14): 2279-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26202779

RESUMO

As legless predators, snakes are unique in their ability to immobilize and kill their prey through the process of constriction, and yet how this pressure incapacitates and ultimately kills the prey remains unknown. In this study, we examined the cardiovascular function of anesthetized rats before, during and after being constricted by boas (Boa constrictor) to examine the effect of constriction on the prey's circulatory function. The results demonstrate that within 6 s of being constricted, peripheral arterial blood pressure (PBP) at the femoral artery dropped to 1/2 of baseline values while central venous pressure (CVP) increased 6-fold from baseline during the same time. Electrocardiographic recordings from the anesthetized rat's heart revealed profound bradycardia as heart rate (fH) dropped to nearly half of baseline within 60 s of being constricted, and QRS duration nearly doubled over the same time period. By the end of constriction (mean 6.5±1 min), rat PBP dropped 2.9-fold, fH dropped 3.9-fold, systemic perfusion pressure (SPP=PBP-CVP) dropped 5.7-fold, and 91% of rats (10 of 11) had evidence of cardiac electrical dysfunction. Blood drawn immediately after constriction revealed that, relative to baseline, rats were hyperkalemic (serum potassium levels nearly doubled) and acidotic (blood pH dropped from 7.4 to 7.0). These results are the first to document the physiological response of prey to constriction and support the hypothesis that snake constriction induces rapid prey death due to circulatory arrest.


Assuntos
Pressão Sanguínea , Boidae , Constrição , Frequência Cardíaca , Comportamento Predatório , Acidose/sangue , Animais , Bradicardia/fisiopatologia , Pressão Venosa Central , Eletrocardiografia , Hiperpotassemia/sangue , Masculino , Ratos , Ratos Wistar
5.
Ecol Evol ; 13(7): e10269, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37475724

RESUMO

Cost-effective use of limited conservation resources requires understanding which data most contribute to alleviating biodiversity declines. Interventions might reasonably prioritise life-cycle transitions with the greatest influence on population dynamics, yet some contributing vital rates are particularly challenging to document. This risks managers making decisions without sufficient empirical coverage of the spatiotemporal variation experienced by the species. Here, we aimed to explore whether the number of studies contributing estimates for a given life-stage transition aligns with that transition's demographic impact on population growth rate, λ. We parameterised a matrix population model using meta-analysis of vital rates for the common eider (Somateria mollissima), an increasingly threatened yet comparatively data-rich species of seaduck, for which some life stages are particularly problematic to study. Female common eiders exhibit intermittent breeding, with some established breeders skipping one or more years between breeding attempts. Our meta-analysis yielded a breeding propensity of 0.72, which we incorporated into our model with a discrete and reversible 'nonbreeder' stage (to which surviving adults transition with a probability of 0.28). The transitions between breeding and nonbreeding states had twice the influence on λ than fertility (summed matrix-element elasticities of 24% and 11%, respectively), whereas almost 15 times as many studies document components of fertility than breeding propensity (n = 103 and n = 7, respectively). The implications of such mismatches are complex because the motivations for feasible on-the-ground conservation actions may be different from what is needed to reduce uncertainty in population projections. Our workflow could form an early part of the toolkit informing future investment of finite resources, to avoid repeated disconnects between data needs and availability thwarting evidence-led conservation.

6.
PLoS One ; 17(7): e0271257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802707

RESUMO

Individual animals engage in many behaviours which are mutually exclusive, and so where individuals increase the duration of time spent on one type of behavioural activity, this must be offset by a corresponding decrease in at least one other type of behaviour. To understand the variation observed in animal behaviour, researchers need to know how individuals trade-off these mutually-exclusive behaviours within their time-activity budget. In this study, we used remotely collected behavioural observations made from a live-streaming webcam to investigate trade-offs in the behaviour of two bird species, the mute swan (Cygnus olor) and whooper swan (Cygnus cygnus). For both species, we tested for correlations in the duration of time spent on key mutually exclusive behaviours: aggression, foraging, maintenance, and resting. We detected a negative association between aggression and resting behaviours in both species, indicating that increased aggression is achieved at the expense of resting behaviour. In contrast, there was no apparent trade-off between aggression and foraging, aggression and maintenance, or maintenance and resting. Foraging and resting behaviours were negatively correlated in both species, highlighting a trade-off between these distinct modes of behaviour. A trade-off between foraging and maintenance behaviours was detected for the sedentary mute swans, but not the migratory whooper swans. Our findings show how birds can trade-off their time investments in mutually exclusive behaviours within their time-activity budgets. Moreover, our study demonstrates how remotely-collected data can be used to investigate fundamental questions in behavioural research.


Assuntos
Anseriformes , Influenza Aviária , Animais , Aves
7.
Artigo em Inglês | MEDLINE | ID: mdl-34444378

RESUMO

The health benefits associated with spending time in natural environments have been highlighted during the COVID-19 pandemic. Lockdowns and restrictions to safeguard public health have exacerbated the pre-existing mental health crisis and rise of non-communicable diseases. Thus, the importance of nature as a health resource has been elevated, hastening calls for a better understanding of how health benefits might differ across user groups and nature provisions. In this regard, urban green spaces have become the greatest research focus; however, blue spaces, especially inland freshwater (e.g., wetlands), remain less studied. First-hand user experiences are also under-represented. This exploratory study examines the motivations and benefits of active wetland centre users in the UK, both during and after visits. Responses to three open-ended questions were collated online from 385 participants, and a qualitative content analysis was conducted based on an existing taxonomy from users of urban green spaces. The results showed strong motivations to visit due to the biodiversity at the site (mainly the birdlife), while less tangible nature (e.g., fresh air) and amenities were also important. In contrast to other studies on natural environments, physical activity was a less influential motivation. Salient derived effects included positive and intensely positive emotions, relaxation and mental restoration. After visits to wetland centres, feelings of vitality and satisfaction were the most prominent effects that emerged. For decision-makers looking to leverage inland blue spaces for public health benefit, our results highlight the broad range and relative prominence of the reasons for use and the associated perceived health benefits derived by users of UK wetland centres. They highlight how biodiversity, abiotic nature and good amenities are important qualities to consider when planning, managing and encouraging people to use natural environments for health benefit, qualities that may also provide important environmental co-benefits.


Assuntos
COVID-19 , Áreas Alagadas , Controle de Doenças Transmissíveis , Recursos em Saúde , Humanos , Pandemias , SARS-CoV-2 , Reino Unido
8.
Aquat Sci ; 79(1): 113-125, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32269451

RESUMO

Assessing the impacts of invasive organisms is a major challenge in ecology. Some widespread invasive species such as crayfish are potential competitors and reciprocal predators of ecologically and recreationally important native fish species. Here, we examine the effects of signal crayfish (Pacifastacus leniusculus) on the growth, diet, and trophic position of the chub (Squalius cephalus) in four rivers in Britain. Growth rates of 0+ chub were typically lower in sympatric populations with signal crayfish compared with allopatric populations, and this effect could be traced through to 2+ chub in one river. However, growth rates of older chub (5+ to 6+) were typically higher in the presence of crayfish. Sympatry with crayfish resulted in lower chub length-at-age and mass-at-age in half of the rivers sampled, with no change detected in the other rivers. Stable isotope analyses (δ13C and δ15N) revealed that both chub and crayfish were omnivorous, feeding at multiple trophic levels and occupying similar trophic positions. We found some evidence that chub trophic position was greater at invaded sites on one river, with no difference detected on a second river. Mixing models suggested crayfish were important food items for both small and large chub at invaded sites. This study provides evidence that invasive species can have both positive and negative effects on different life stages of a native species, with the net impact likely to depend on responses at the population level.

9.
Biol Rev Camb Philos Soc ; 92(2): 1128-1141, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27062094

RESUMO

Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small-scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta-analysis of the outcomes of plant-herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between-taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore-plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed-nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed-nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore-plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant-herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top-down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.


Assuntos
Ecossistema , Herbivoria , Fenômenos Fisiológicos Vegetais , Animais , Biomassa , Densidade Demográfica
10.
PLoS One ; 9(7): e104034, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25077615

RESUMO

Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems.


Assuntos
Anseriformes/fisiologia , Herbivoria , Plantas , Animais , Conservação de Recursos Energéticos , Ecossistema , Modelos Teóricos , Rios
11.
PLoS One ; 8(2): e56287, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405270

RESUMO

Abundant herbivores can damage plants and so cause conflict with conservation, agricultural, and fisheries interests. Management of herbivore populations is a potential tool to alleviate such conflicts but may raise concerns about the economic and ethical costs of implementation, especially if the herbivores are 'charismatic' and popular with the public. Thus it is critical to evaluate the probability of achieving the desired ecological outcomes before proceeding to a field trial. Here we assessed the potential for population control to resolve a conflict of non-breeding swans grazing in river catchments. We used a mathematical model to evaluate the consequences of three population management strategies; (a) reductions in reproductive success, (b) removal of individuals, and (c) reduced reproductive success and removal of individuals combined. This model gave accurate projections of historical changes in population size for the two rivers for which data were available. Our model projected that the River Frome swan population would increase by 54%, from 257 to 397 individuals, over 17 years in the absence of population control. Removal of ≥60% of non-breeding individuals each year was projected to reduce the catchment population below the level for which grazing conflicts have been previously reported. Reducing reproductive success, even to 0 eggs per nest, failed to achieve the population reduction required. High adult and juvenile survival probabilities (>0.7) and immigration from outside of the catchment limited the effects of management on population size. Given the high, sustained effort required, population control does not represent an effective management option for preventing the grazing conflicts in river catchments. Our study highlights the need to evaluate the effects of different management techniques, both alone and in combination, prior to field trials. Population models, such as the one presented here, can provide a cost-effective and ethical means of such evaluations.


Assuntos
Comportamento Alimentar/fisiologia , Herbivoria/fisiologia , Modelos Teóricos , Reprodução/fisiologia , Animais , Patos , Densidade Demográfica , Dinâmica Populacional , Rios
12.
PLoS One ; 7(11): e49824, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166777

RESUMO

Understanding plant community responses to combinations of biotic and abiotic factors is critical for predicting ecosystem response to environmental change. However, studies of plant community regulation have seldom considered how responses to such factors vary with the different phases of the plant growth cycle. To address this deficit we studied an aquatic plant community in an ecosystem subject to gradients in mute swan (Cygnus olor) herbivory, riparian shading, water temperature and distance downstream of the river source. We quantified abundance, species richness, evenness, flowering and dominance in relation to biotic and abiotic factors during the growth-, peak-, and recession-phases of the plant growth cycle. We show that the relative importance of biotic and abiotic factors varied between plant community properties and between different phases of the plant growth cycle. Herbivory became more important during the later phases of peak abundance and recession due to an influx of swans from adjacent pasture fields. Shading by riparian vegetation also had a greater depressing effect on biomass in later seasons, probably due to increased leaf abundance reducing light intensity reaching the aquatic plants. The effect of temperature on community diversity varied between upstream and downstream sites by altering the relative competitiveness of species at these sites. These results highlight the importance of seasonal patterns in the regulation of plant community structure and function by multiple factors.


Assuntos
Ecossistema , Meio Ambiente , Plantas , Animais , Biomassa , Biota , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA