Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 154(4): 763-74, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23953110

RESUMO

Proteins, particularly viral proteins, can be multifunctional, but the mechanisms behind multifunctionality are not fully understood. Here, we illustrate through multiple crystal structures, biochemistry, and cellular microscopy that VP40 rearranges into different structures, each with a distinct function required for the ebolavirus life cycle. A butterfly-shaped VP40 dimer traffics to the cellular membrane. Once there, electrostatic interactions trigger rearrangement of the polypeptide into a linear hexamer. These hexamers construct a multilayered, filamentous matrix structure that is critical for budding and resembles tomograms of authentic virions. A third structure of VP40, formed by a different rearrangement, is not involved in virus assembly but instead uniquely binds RNA to regulate viral transcription inside infected cells. These results provide a functional model for ebolavirus matrix assembly and the other roles of VP40 in the virus life cycle and demonstrate how a single wild-type, unmodified polypeptide can assemble into different structures for different functions.


Assuntos
Ebolavirus/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Cristalografia por Raios X , Dimerização , Ebolavirus/química , Ebolavirus/classificação , Ebolavirus/genética , Modelos Moleculares , Mutagênese , Mutação Puntual , Proteínas da Matriz Viral/genética , Montagem de Vírus , Liberação de Vírus
2.
Mol Cell ; 44(4): 532-44, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22099302

RESUMO

Defining the mechanisms underlying the control of mitochondrial fusion and fission is critical to understanding cellular adaptation to diverse physiological conditions. Here we demonstrate that hypoxia induces fission of mitochondrial membranes, dependent on availability of the mitochondrial scaffolding protein AKAP121. AKAP121 controls mitochondria dynamics through PKA-dependent inhibitory phosphorylation of Drp1 and PKA-independent inhibition of Drp1-Fis1 interaction. Reduced availability of AKAP121 by the ubiquitin ligase Siah2 relieves Drp1 inhibition by PKA and increases its interaction with Fis1, resulting in mitochondrial fission. High AKAP121 levels, seen in cells lacking Siah2, attenuate fission and reduce apoptosis of cardiomyocytes under simulated ischemia. Infarct size and degree of cell death were reduced in Siah2(-/-) mice subjected to myocardial infarction. Inhibition of Siah2 or Drp1 in hatching C. elegans reduces their life span. Through modulating Fis1/Drp1 complex availability, our studies identify Siah2 as a key regulator of hypoxia-induced mitochondrial fission and its physiological significance in ischemic injury and nematode life span.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dinaminas/metabolismo , Hipóxia/metabolismo , Mitocôndrias/fisiologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Adaptação Fisiológica , Animais , Apoptose , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Dinaminas/genética , Humanos , Hipóxia/genética , Hipóxia/patologia , Imuno-Histoquímica , Lentivirus , Longevidade , Fusão de Membrana , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miócitos Cardíacos/citologia , Fosforilação , Transdução Genética , Ubiquitina-Proteína Ligases/genética
3.
Proc Natl Acad Sci U S A ; 111(41): 14924-9, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267624

RESUMO

Complex hereditary spastic paraplegia (HSP) is a genetic disorder that causes lower limb spasticity and weakness and intellectual disability. Deleterious mutations in the poorly characterized serine hydrolase DDHD2 are a causative basis for recessive complex HSP. DDHD2 exhibits phospholipase activity in vitro, but its endogenous substrates and biochemical functions remain unknown. Here, we report the development of DDHD2(-/-) mice and a selective, in vivo-active DDHD2 inhibitor and their use in combination with mass spectrometry-based lipidomics to discover that DDHD2 regulates brain triglycerides (triacylglycerols, or TAGs). DDHD2(-/-) mice show age-dependent TAG elevations in the central nervous system, but not in several peripheral tissues. Large lipid droplets accumulated in DDHD2(-/-) brains and were localized primarily to the intracellular compartments of neurons. These metabolic changes were accompanied by impairments in motor and cognitive function. Recombinant DDHD2 displays TAG hydrolase activity, and TAGs accumulated in the brains of wild-type mice treated subchronically with a selective DDHD2 inhibitor. These findings, taken together, indicate that the central nervous system possesses a specialized pathway for metabolizing TAGs, disruption of which leads to massive lipid accumulation in neurons and complex HSP syndrome.


Assuntos
Lipase/metabolismo , Fosfolipases A1/metabolismo , Paraplegia Espástica Hereditária/enzimologia , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Cognição , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Deleção de Genes , Marcação de Genes , Células HEK293 , Humanos , Lipase/antagonistas & inibidores , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/ultraestrutura , Locomoção , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fosfolipases , Fosfolipases A1/antagonistas & inibidores , Fosfolipases A1/deficiência , Reprodutibilidade dos Testes , Paraplegia Espástica Hereditária/genética , Triglicerídeos/metabolismo
4.
Proc Natl Acad Sci U S A ; 108(49): 19678-82, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22106289

RESUMO

Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2-3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention.


Assuntos
Cardiomiopatias/dietoterapia , Dieta Cetogênica , Complexo Mediador/genética , Miopatias Mitocondriais/dietoterapia , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Animais , Sequência de Bases , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Eletroforese em Gel de Poliacrilamida , Feminino , Expressão Gênica , Genes Letais , Estimativa de Kaplan-Meier , Masculino , Complexo Mediador/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Desmame
5.
Development ; 136(21): 3597-606, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19793892

RESUMO

Talin 1 and 2 connect integrins to the actin cytoskeleton and regulate the affinity of integrins for ligands. In skeletal muscle, talin 1 regulates the stability of myotendinous junctions (MTJs), but the function of talin 2 in skeletal muscle is not known. Here we show that MTJ integrity is affected in talin 2-deficient mice. Concomitant ablation of talin 1 and 2 leads to defects in myoblast fusion and sarcomere assembly, resembling defects in muscle lacking beta1 integrins. Talin 1/2-deficient myoblasts express functionally active beta1 integrins, suggesting that defects in muscle development are not primarily caused by defects in ligand binding, but rather by disruptions of the interaction of integrins with the cytoskeleton. Consistent with this finding, assembly of integrin adhesion complexes is perturbed in the remaining muscle fibers of talin 1/2-deficient mice. We conclude that talin 1 and 2 are crucial for skeletal muscle development, where they regulate myoblast fusion, sarcomere assembly and the maintenance of MTJs.


Assuntos
Músculo Esquelético/embriologia , Sarcômeros/metabolismo , Talina/metabolismo , Animais , Fusão Celular , Citoesqueleto/metabolismo , Integrinas/metabolismo , Camundongos , Camundongos Knockout , Doenças Musculares/metabolismo , Talina/genética
6.
J Virol ; 84(21): 10999-1009, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20686033

RESUMO

We analyzed the biochemical and ultrastructural properties of hepatitis C virus (HCV) particles produced in cell culture. Negative-stain electron microscopy revealed that the particles were spherical (∼40- to 75-nm diameter) and pleomorphic and that some of them contain HCV E2 protein and apolipoprotein E on their surfaces. Electron cryomicroscopy revealed two major particle populations of ∼60 and ∼45 nm in diameter. The ∼60-nm particles were characterized by a membrane bilayer (presumably an envelope) that is spatially separated from an internal structure (presumably a capsid), and they were enriched in fractions that displayed a high infectivity-to-HCV RNA ratio. The ∼45-nm particles lacked a membrane bilayer and displayed a higher buoyant density and a lower infectivity-to-HCV RNA ratio. We also observed a minor population of very-low-density, >100-nm-diameter vesicular particles that resemble exosomes. This study provides low-resolution ultrastructural information of particle populations displaying differential biophysical properties and specific infectivity. Correlative analysis of the abundance of the different particle populations with infectivity, HCV RNA, and viral antigens suggests that infectious particles are likely to be present in the large ∼60-nm HCV particle populations displaying a visible bilayer. Our study constitutes an initial approach toward understanding the structural characteristics of infectious HCV particles.


Assuntos
Hepacivirus/ultraestrutura , Vírion/ultraestrutura , Antígenos Virais/análise , Capsídeo , Técnicas de Cultura de Células , Hepacivirus/patogenicidade , Bicamadas Lipídicas , Microscopia Eletrônica , Tamanho da Partícula , RNA Viral/análise , Vírion/patogenicidade
7.
J Virol ; 84(23): 12110-24, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861268

RESUMO

Autophagy can play an important part in protecting host cells during virus infection, and several viruses have developed strategies by which to evade or even exploit this homeostatic pathway. Tissue culture studies have shown that poliovirus, an enterovirus, modulates autophagy. Herein, we report on in vivo studies that evaluate the effects on autophagy of coxsackievirus B3 (CVB3). We show that in pancreatic acinar cells, CVB3 induces the formation of abundant small autophagy-like vesicles and permits amphisome formation. However, the virus markedly, albeit incompletely, limits the fusion of autophagosomes (and/or amphisomes) with lysosomes, and, perhaps as a result, very large autophagy-related structures are formed within infected cells; we term these structures megaphagosomes. Ultrastructural analyses confirmed that double-membraned autophagy-like vesicles were present in infected pancreatic tissue and that the megaphagosomes were related to the autophagy pathway; they also revealed a highly organized lattice, the individual components of which are of a size consistent with CVB RNA polymerase; we suggest that this may represent a coxsackievirus replication complex. Thus, these in vivo studies demonstrate that CVB3 infection dramatically modifies autophagy in infected pancreatic acinar cells.


Assuntos
Autofagia/fisiologia , Infecções por Coxsackievirus/fisiopatologia , Enterovirus Humano B , Pâncreas/citologia , Fagossomos/virologia , Análise de Variância , Animais , Western Blotting , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Pâncreas/virologia , Fagossomos/ultraestrutura
8.
Proc Natl Acad Sci U S A ; 105(5): 1416-9, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18216240

RESUMO

Methods for the construction of ordered nanoscale arrays have been implicated in fields ranging from separation technologies to microelectronics. Yet, despite the plethora of nanoscale structures assembled in nature that use a templating strategy, chemists have been unable to replicate this success. A technology is reported for templated organic polymers composed of filamentous bacteriophage-polyacrylamide biomacromolecules that self-assemble into highly ordered helical bundles displaying hexagonal close packing. The results align with a previously reported mathematical prediction for the close packing of flexible tubes. This biopolymeric assembly can be viewed as a magnification of the inherent microscopic chirality and helicity present in individual phage particles at the macroscale level.


Assuntos
Resinas Acrílicas/química , Bacteriófago M13/química , Nanoestruturas/química , Nanotecnologia/métodos , Polímeros/química , Microscopia Eletrônica de Transmissão , Polímeros/síntese química
9.
Cell Biol Int ; 33(2): 148-57, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19000931

RESUMO

Early apoptosis is defined by stereotypic morphological changes, especially evident in the nucleus, where chromatin condenses and compacts, and assumes a globular, half-moon or crescent-shaped morphology. Accumulating evidence suggests that cytoplasmic organelles such as mitochondria and the Golgi complex are major sites of integration of pro-apoptotic signaling. In this study, cytoplasmic organelles including Golgi complex, mitochondria, endosomes, lysosomes, and peroxisomes were shown to condense at the same unique region adjacent to the crescentic nucleus during a relatively early stage of apoptosis induced by staurosporine or other agents. The co-clustering phenomenon may be caused by shrinkage of cytoplasm during apoptosis although cytoskeletal markers actin and tubulin were not condensed and appeared excluded. These data suggest the co-clustering of cytoplasmic organelles plays an interesting role during the progression of the apoptotic process. It is possible that modification of pro-apoptotic proteins may arise as a result of the interplay of these cytoplasmic organelles.


Assuntos
Apoptose , Nucléolo Celular/ultraestrutura , Complexo de Golgi/ultraestrutura , Organelas/ultraestrutura , Linhagem Celular , Nucléolo Celular/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Humanos , Microscopia Eletrônica , Organelas/efeitos dos fármacos , Estaurosporina/farmacologia
10.
J Leukoc Biol ; 81(6): 1504-11, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17369493

RESUMO

Cells of the monocyte/macrophage lineage have been shown to be the principal targets for productive HIV-1 replication within the CNS. In addition, HIV-1-associated dementia (HAD) has been shown to correlate with macrophage abundance in the brain. Although increased entry of monocytes into the brain is thought to initiate this process, mechanisms that prevent macrophage egress from the brain and means that prevent macrophage death may also contribute to cell accumulation. We hypothesized that osteopontin (OPN) was involved in the accumulation of macrophages in the brain in neuroAIDS. Using in vitro model systems, we have demonstrated the role of OPN in two distinct aspects of macrophage accumulation: prevention from recirculation and protection from apoptosis. In these unique mechanisms, OPN would aid in macrophage survival and accumulation in the brain, the pathological substrate of HAD.


Assuntos
Apoptose , Macrófagos/fisiologia , Monócitos/fisiologia , Osteopontina/fisiologia , Animais , Células Cultivadas , Quimiocinas/metabolismo , Quimiotaxia de Leucócito , Encefalite Viral/sangue , Encefalite Viral/líquido cefalorraquidiano , Células Endoteliais/fisiologia , Humanos , Macaca mulatta , Ativação de Macrófagos , Osteopontina/sangue , Osteopontina/líquido cefalorraquidiano , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/líquido cefalorraquidiano
12.
Chem Biol ; 10(9): 859-67, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14522056

RESUMO

Pyrrole-imidazole polyamides bind DNA with affinities comparable to those of transcriptional regulatory proteins and inhibit the DNA binding activities of components of the transcription apparatus. If polyamides are to be useful for the regulation of gene expression in cell culture experiments, one pivotal issue is accessibility of specific sites in nuclear chromatin. We first determined the kinetics of uptake and subcellular distribution of polyamides in lymphoid and myeloid cells using fluorescent polyamide-bodipy conjugates and deconvolution microscopy. Then cells were incubated with a polyamide-chlorambucil conjugate, and the sites of specific DNA cleavage in the nuclear chromatin were assayed by ligation-mediated PCR. In addition, DNA microarray analysis revealed that two different polyamides generated distinct transcription profiles. Remarkably, the polyamides affected only a limited number of genes.


Assuntos
Cromatina/química , Nylons/farmacologia , Transcrição Gênica/efeitos dos fármacos , Alquilação , Apoptose/efeitos dos fármacos , Sítios de Ligação , Divisão Celular/efeitos dos fármacos , Linhagem Celular , DNA/química , Perfilação da Expressão Gênica , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Microscopia de Fluorescência , Células Mieloides/citologia , Células Mieloides/metabolismo , Nylons/química , Nylons/farmacocinética , Análise de Sequência com Séries de Oligonucleotídeos
13.
Cell Rep ; 12(1): 140-149, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26119732

RESUMO

Ebolavirus NP oligomerizes into helical filaments found at the core of the virion, encapsidates the viral RNA genome, and serves as a scaffold for additional viral proteins within the viral nucleocapsid. We identified a portion of the phosphoprotein homolog VP35 that binds with high affinity to nascent NP and regulates NP assembly and viral genome binding. Removal of the VP35 peptide leads to NP self-assembly via its N-terminal oligomerization arm. NP oligomerization likely causes a conformational change between the NP N- and C-terminal domains, facilitating RNA binding. These functional data are complemented by crystal structures of the NP°-VP35 complex at 2.4 Å resolution. The interactions between NP and VP35 illuminated by these structures are conserved among filoviruses and provide key targets for therapeutic intervention.


Assuntos
Nucleoproteínas/química , Multimerização Proteica , Proteínas do Core Viral/química , Sequência de Aminoácidos , Sítios de Ligação , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo , Nucleoproteínas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , Proteínas do Core Viral/metabolismo
14.
Autophagy ; 11(8): 1389-407, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090585

RESUMO

RNA viruses modify intracellular membranes to produce replication scaffolds. In pancreatic cells, coxsackievirus B3 (CVB3) hijacks membranes from the autophagy pathway, and in vivo disruption of acinar cell autophagy dramatically delays CVB3 replication. This is reversed by expression of GFP-LC3, indicating that CVB3 may acquire membranes from an alternative, autophagy-independent, source(s). Herein, using 3 recombinant CVB3s (rCVB3s) encoding different proteins (proLC3, proLC3(G120A), or ATG4B(C74A)), we show that CVB3 is, indeed, flexible in its utilization of cellular membranes. When compared with a control rCVB3, all 3 viruses replicated to high titers in vivo, and caused severe pancreatitis. Most importantly, each virus appeared to subvert membranes in a unique manner. The proLC3 virus produced a large quantity of LC3-I which binds to phosphatidylethanolamine (PE), affording access to the autophagy pathway. The proLC3(G120A) protein cannot attach to PE, and instead binds to the ER-resident protein SEL1L, potentially providing an autophagy-independent source of membranes. Finally, the ATG4B(C74A) protein sequestered host cell LC3-I, causing accumulation of immature phagophores, and massive membrane rearrangement. Taken together, our data indicate that some RNA viruses can exploit a variety of different intracellular membranes, potentially maximizing their replication in each of the diverse cell types that they infect in vivo.


Assuntos
Autofagia , Infecções por Coxsackievirus/virologia , Enterovirus/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Cisteína Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Pâncreas/virologia , Fosfatidiletanolaminas/química , Proteínas/metabolismo , Vírus de RNA/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Virais/metabolismo , Replicação Viral
15.
Sci Rep ; 5: 12501, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26238798

RESUMO

Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314-324) and E2 (residues 412-423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a "scaffolding meta-server" to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a "multivalent scaffolding" approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.


Assuntos
Antígenos Virais/química , Epitopos/química , Hepacivirus/química , Proteínas Recombinantes/química , Proteínas do Envelope Viral/química , Vacinas contra Hepatite Viral/genética , Sequência de Aminoácidos , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/metabolismo , Antígenos Virais/genética , Antígenos Virais/imunologia , Desenho de Fármacos , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Expressão Gênica , Células HEK293 , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/prevenção & controle , Hepatite C/virologia , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia
16.
Nat Commun ; 6: 5998, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25601659

RESUMO

Fluorocarbons are lipophobic and non-polar molecules that exhibit remarkable biocompatibility, with applications in liquid ventilation and synthetic blood. The unique properties of these compounds have also enabled mass spectrometry imaging of tissues where the fluorocarbons act as a Teflon-like coating for nanostructured surfaces to assist in desorption/ionization. Here we report fluorinated gold nanoparticles (f-AuNPs) designed to facilitate nanostructure imaging mass spectrometry. Irradiation of f-AuNPs results in the release of the fluorocarbon ligands providing a driving force for analyte desorption. The f-AuNPs allow for the mass spectrometry analysis of both lipophilic and polar (central carbon) metabolites. An important property of AuNPs is that they also act as contrast agents for X-ray microtomography and electron microscopy, a feature we have exploited by infusing f-AuNPs into tissue via fluorocarbon liquids to facilitate multimodal (molecular and anatomical) imaging.


Assuntos
Diagnóstico por Imagem/métodos , Ouro/química , Nanopartículas Metálicas/química , Espectrometria de Massas , Microscopia Eletrônica , Nanoestruturas/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-23630518

RESUMO

Methamphetamine (Meth) abuse has been shown to induce alterations in mitochondrial function in the brain as well as to induce hyperthermia, which contributes to neurotoxicity and Meth-associated mortality. Brown adipose tissue (BAT), a thermogenic site known to be important in neonates, has recently regained importance since being identified in significant amounts and in correlation with metabolic balance in human adults. Given the high mitochondrial content of BAT and its role in thermogenesis, we aimed to investigate whether BAT plays any role in the development of Meth-induced hyperthermia. By ablating or denervating BAT, we identified a partial contribution of this organ to Meth-induced hyperthermia. BAT ablation decreased temperature by 0.5°C and reduced the length of hyperthermia by 1 h, compared to sham-operated controls. BAT denervation also affected the development of hyperthermia in correlation with decreased the expression of electron transport chain molecules, and increase on PCG1a levels, but without affecting Meth-induced uncoupling protein 1 upregulation. Furthermore, in isolated BAT cells in culture, Meth, but not Norepinephrine, induced H2O2 upregulation. In addition, we found that in vivo Reactive Oxygen Species (ROS) play a role in Meth hyperthermia. Thus, sympathetically mediated mitochondrial activation in the BAT and Meth-induced ROS are key components to the development of hyperthermia in Meth abuse.

18.
Cell Host Microbe ; 11(3): 298-305, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22423969

RESUMO

Autophagy protects against many infections by inducing the lysosomal-mediated degradation of invading pathogens. However, previous in vitro studies suggest that some enteroviruses not only evade these protective effects but also exploit autophagy to facilitate their replication. We generated Atg5(f/f)/Cre(+) mice, in which the essential autophagy gene Atg5 is specifically deleted in pancreatic acinar cells, and show that coxsackievirus B3 (CVB3) requires autophagy for optimal infection and pathogenesis. Compared to Cre(-) littermates, Atg5(f/f)/Cre(+) mice had an ∼2,000-fold lower CVB3 titer in the pancreas, and pancreatic pathology was greatly diminished. Both in vivo and in vitro, Atg5(f/f)/Cre(+) acinar cells had reduced intracellular viral RNA and proteins. Furthermore, intracellular structural elements induced upon CVB3 infection, such as compound membrane vesicles and highly geometric paracrystalline arrays, which may represent viral replication platforms, were infrequently observed in infected Atg5(f/f)/Cre(+) cells. Thus, CVB3-induced subversion of autophagy not only benefits the virus but also exacerbates pancreatic pathology.


Assuntos
Células Acinares/virologia , Autofagia , Infecções por Coxsackievirus/patologia , Enterovirus/fisiologia , Pâncreas/patologia , Replicação Viral , Células Acinares/patologia , Células Acinares/fisiologia , Animais , Proteína 5 Relacionada à Autofagia , Infecções por Coxsackievirus/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Pâncreas/metabolismo , Pâncreas/virologia , Transdução de Sinais
19.
Autophagy ; 6(6): 702-10, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20534972

RESUMO

Disruption of autophagy--a key homeostatic process in which cytosolic components are degraded and recycled through lysosomes--can cause neurodegeneration in tissue culture and in vivo. Upregulation of this pathway may be neuroprotective, and much effort is being invested in developing drugs that cross the blood brain barrier and increase neuronal autophagy. One well-recognized way of inducing autophagy is by food restriction, which upregulates autophagy in many organs including the liver; but current dogma holds that the brain escapes this effect, perhaps because it is a metabolically privileged site. Here, we have re-evaluated this tenet using a novel approach that allows us to detect, enumerate and characterize autophagosomes in vivo. We first validate the approach by showing that it allows the identification and characterization of autophagosomes in the livers of food-restricted mice. We use the method to identify constitutive autophagosomes in cortical neurons and Purkinje cells, and we show that short-term fasting leads to a dramatic upregulation in neuronal autophagy. The increased neuronal autophagy is revealed by changes in autophagosome abundance and characteristics, and by diminished neuronal mTOR activity in vivo, demonstrated by a reduction in levels of phosphorylated S6 ribosomal protein in Purkinje cells. The increased abundance of autophagosomes in Purkinje cells was confirmed using transmission electron microscopy. Our data lead us to speculate that sporadic fasting might represent a simple, safe and inexpensive means to promote this potentially therapeutic neuronal response.


Assuntos
Autofagia/fisiologia , Jejum/fisiologia , Neurônios/citologia , Animais , Restrição Calórica , Cerebelo/citologia , Cerebelo/ultraestrutura , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Células de Purkinje/ultraestrutura , Reprodutibilidade dos Testes , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
20.
Mol Cell Biol ; 30(4): 961-75, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19995913

RESUMO

Regulated generation of reactive oxygen species (ROS) is primarily accomplished by NADPH oxidases (Nox). Nox1 to Nox4 form a membrane-associated heterodimer with p22(phox), creating the docking site for assembly of the activated oxidase. Signaling specificity is achieved by interaction with a complex network of cytosolic components. Nox4, an oxidase linked to cardiovascular disease, carcinogenesis, and pulmonary fibrosis, deviates from this model by displaying constitutive H(2)O(2) production without requiring known regulators. Extensive Nox4/Nox2 chimera screening was initiated to pinpoint structural motifs essential for ROS generation and Nox subcellular localization. In summary, a matching B loop was crucial for catalytic activity of both Nox enzymes. Substitution of the carboxyl terminus was sufficient for converting Nox4 into a phorbol myristate acetate (PMA)-inducible phenotype, while Nox2-based chimeras never gained constitutive activity. Changing the Nox2 but not the Nox4 amino terminus abolished ROS generation. The unique heterodimerization of a functional Nox4/p22(phox) Y121H complex was dependent on the D loop. Nox4, Nox2, and functional Nox chimeras translocated to the plasma membrane. Cell surface localization of Nox4 or PMA-inducible Nox4 did not correlate with O(2)(-) generation. In contrast, Nox4 released H(2)O(2) and promoted cell migration. Our work provides insights into Nox structure, regulation, and ROS output that will aid inhibitor design.


Assuntos
Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Motivos de Aminoácidos , Biocatálise , Linhagem Celular , Movimento Celular , Sobrevivência Celular , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Microscopia Eletrônica , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/química , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA