Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Hepatol ; 77(1): 15-28, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35167910

RESUMO

BACKGROUND & AIMS: The pathogenesis of liver fibrosis requires activation of hepatic stellate cells (HSCs); once activated, HSCs lose intracellular fatty acids but the role of fatty acid oxidation and carnitine palmitoyltransferase 1A (CPT1A) in this process remains largely unexplored. METHODS: CPT1A was found in HSCs of patients with fibrosis. Pharmacological and genetic manipulation of CPT1A were performed in human HSC cell lines and primary HCSs. Finally, we induced fibrosis in mice lacking CPT1A specifically in HSCs. RESULTS: Herein, we show that CPT1A expression is elevated in HSCs of patients with non-alcoholic steatohepatitis, showing a positive correlation with the fibrosis score. This was corroborated in rodents with fibrosis, as well as in primary human HSCs and LX-2 cells activated by transforming growth factor ß1 (TGFß1) and fetal bovine serum (FBS). Furthermore, both pharmacological and genetic silencing of CPT1A prevent TGFß1- and FBS-induced HSC activation by reducing mitochondrial activity. The overexpression of CPT1A, induced by saturated fatty acids and reactive oxygen species, triggers mitochondrial activity and the expression of fibrogenic markers. Finally, mice lacking CPT1A specifically in HSCs are protected against fibrosis induced by a choline-deficient high-fat diet, a methionine- and choline-deficient diet, or treatment with carbon tetrachloride. CONCLUSIONS: These results indicate that CPT1A plays a critical role in the activation of HSCs and is implicated in the development of liver fibrosis, making it a potentially actionable target for fibrosis treatment. LAY SUMMARY: We show that the enzyme carnitine palmitoyltransferase 1A (CPT1A) is elevated in hepatic stellate cells (HSCs) in patients with fibrosis and mouse models of fibrosis, and that CPT1A induces the activation of these cells. Inhibition of CPT1A ameliorates fibrosis by preventing the activation of HSCs.


Assuntos
Carnitina O-Palmitoiltransferase , Células Estreladas do Fígado , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Colina , Ácidos Graxos/metabolismo , Fibrose , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , Camundongos
2.
J Hepatol ; 64(2): 409-418, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26394163

RESUMO

BACKGROUND & AIMS: Glycine N-methyltransferase (GNMT) expression is decreased in some patients with severe non-alcoholic fatty liver disease. Gnmt deficiency in mice (Gnmt-KO) results in abnormally elevated serum levels of methionine and its metabolite S-adenosylmethionine (SAMe), and this leads to rapid liver steatosis development. Autophagy plays a critical role in lipid catabolism (lipophagy), and defects in autophagy have been related to liver steatosis development. Since methionine and its metabolite SAMe are well known inactivators of autophagy, we aimed to examine whether high levels of both metabolites could block autophagy-mediated lipid catabolism. METHODS: We examined methionine levels in a cohort of 358 serum samples from steatotic patients. We used hepatocytes cultured with methionine and SAMe, and hepatocytes and livers from Gnmt-KO mice. RESULTS: We detected a significant increase in serum methionine levels in steatotic patients. We observed that autophagy and lipophagy were impaired in hepatocytes cultured with high methionine and SAMe, and that Gnmt-KO livers were characterized by an impairment in autophagy functionality, likely caused by defects at the lysosomal level. Elevated levels of methionine and SAMe activated PP2A by methylation, while blocking PP2A activity restored autophagy flux in Gnmt-KO hepatocytes, and in hepatocytes treated with SAMe and methionine. Finally, normalization of methionine and SAMe levels in Gnmt-KO mice using a methionine deficient diet normalized the methylation capacity, PP2A methylation, autophagy, and ameliorated liver steatosis. CONCLUSIONS: These data suggest that elevated levels of methionine and SAMe can inhibit autophagic catabolism of lipids contributing to liver steatosis.


Assuntos
Autofagia/fisiologia , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Metionina/sangue , Proteína Fosfatase 2/metabolismo , S-Adenosilmetionina/sangue , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Humanos , Metilação , Camundongos
3.
Hippocampus ; 24(7): 840-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687756

RESUMO

The hippocampus is a brain area characterized by its high plasticity, observed at all levels of organization: molecular, synaptic, and cellular, the latter referring to the capacity of neural precursors within the hippocampus to give rise to new neurons throughout life. Recent findings suggest that promoter methylation is a plastic process subjected to regulation, and this plasticity seems to be particularly important for hippocampal neurogenesis. We have detected the enzyme GNMT (a liver metabolic enzyme) in the hippocampus. GNMT regulates intracellular levels of SAMe, which is a universal methyl donor implied in almost all methylation reactions and, thus, of prime importance for DNA methylation. In addition, we show that deficiency of this enzyme in mice (Gnmt-/-) results in high SAMe levels within the hippocampus, reduced neurogenic capacity, and spatial learning and memory impairment. In vitro, SAMe inhibited neural precursor cell division in a concentration-dependent manner, but only when proliferation signals were triggered by bFGF. Indeed, SAMe inhibited the bFGF-stimulated MAP kinase signaling cascade, resulting in decreased cyclin E expression. These results suggest that alterations in the concentration of SAMe impair neurogenesis and contribute to cognitive decline.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/psicologia , Cognição/fisiologia , Glicina N-Metiltransferase/deficiência , Hipocampo/enzimologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , S-Adenosilmetionina/fisiologia , Animais , Ciclina E/biossíntese , Ciclina E/genética , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/fisiologia , Hipocampo/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/enzimologia , Transtornos da Memória/etiologia , Metionina/metabolismo , Metionina Adenosiltransferase/deficiência , Metionina Adenosiltransferase/genética , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Teste de Desempenho do Rota-Rod , S-Adenosilmetionina/biossíntese
4.
Cell Rep Med ; 5(2): 101401, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340725

RESUMO

The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-ß1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ativação Metabólica , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Fibrose , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo
5.
Sci Adv ; 10(15): eadm7600, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608019

RESUMO

Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.


Assuntos
Doença de Charcot-Marie-Tooth , Células de Schwann , Animais , Camundongos , Bainha de Mielina/genética , Doença de Charcot-Marie-Tooth/genética , Mutação , Processamento de Proteína Pós-Traducional
6.
J Neurosci ; 32(14): 4944-58, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22492050

RESUMO

An important prerequisite to myelination in peripheral nerves is the establishment of one-to-one relationships between axons and Schwann cells. This patterning event depends on immature Schwann cell proliferation, apoptosis, and morphogenesis, which are governed by coordinated changes in gene expression. Here, we found that the RNA-binding protein human antigen R (HuR) was highly expressed in immature Schwann cells, where genome-wide identification of its target mRNAs in vivo in mouse sciatic nerves using ribonomics showed an enrichment of functionally related genes regulating these processes. HuR coordinately regulated expression of several genes to promote proliferation, apoptosis, and morphogenesis in rat Schwann cells, in response to NRG1, TGFß, and laminins, three major signals implicated in this patterning event. Strikingly, HuR also binds to several mRNAs encoding myelination-related proteins but, contrary to its typical function, negatively regulated their expression, likely to prevent ectopic myelination during development. These functions of HuR correlated with its abundance and subcellular localization, which were regulated by different signals in Schwann cells.


Assuntos
Proteínas ELAV/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/fisiologia , Proteínas de Ligação a RNA/fisiologia , Células de Schwann/citologia , Células de Schwann/fisiologia , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Proliferação de Células , Células Cultivadas , Proteínas ELAV/biossíntese , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
7.
J Neurosci Res ; 91(1): 105-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23073893

RESUMO

The transcription factor Krox-20 (Egr2) is a master regulator of Schwann cell myelination. In mice from which calcineurin B had been excised in cells of the neural crest lineage, calcineurin-nuclear factor of activated T cells (NFAT) signaling was required for neuregulin-related Schwann cell myelination (Kao et al. [2009] Immunity 12:359-372). Whether NFAT signaling required simultaneous elevation of intracellular cAMP levels was not explored. In vivo, Krox-20 expression requires continuous axon-Schwann cell signaling that in Schwann cell cultures can be mimicked by elevation of intracellular cAMP. We have investigated the role of the calcineurin-NFAT pathway in Krox-20 induction in purified rat Schwann cell cultures. Activation of this pathway requires elevation of intracellular Ca(2+) levels. The calcium ionophore A23187 or ionomycin was used to increase intracellular Ca(2+) levels in Schwann cell cultures that had been treated with dibutyryl cAMP to induce Krox-20. Increase in Ca(2+) levels significantly potentiated Krox-20 induction, determined by Krox-20 immunolabeling of individual cells and Western blotting. Levels of the myelin proteins periaxin and P(0) were also elevated. The potentiating effect was blocked by cyclosporin A, a specific blocker of the calcineurin-NFAT pathway. We found that, in the absence of cAMP elevation, treatment with A23187 alone failed to induce Krox-20 expression, indicating that NFAT upregulation of Krox-20 requires elevation of cAMP levels in Schwann cells. P-VIVIT, another specific inhibitor of calcineurin-NFAT interaction, blocked Krox-20 induction in response to dibutyryl cAMP and ionophore. HA-NFAT1 (1-460)-GFP translocated to the nucleus on treatment with dibutyryl cAMP with or without added ionophore. NFAT isoforms 1-4 were detected in purified Schwann cells by quantitative RT-PCR.


Assuntos
AMP Cíclico/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição NFATC/metabolismo , Células de Schwann/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Transfecção , Regulação para Cima
8.
Hepatology ; 56(5): 1870-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22576182

RESUMO

UNLABELLED: RNA-binding proteins (RBPs) play a major role in the control of messenger RNA (mRNA) turnover and translation rates. We examined the role of the RBP, human antigen R (HuR), during cholestatic liver injury and hepatic stellate cell (HSC) activation. HuR silencing attenuated fibrosis development in vivo after BDL, reducing liver damage, oxidative stress, inflammation, and collagen and alpha smooth muscle actin (α-SMA) expression. HuR expression increased in activated HSCs from bile duct ligation mice and during HSC activation in vitro, and HuR silencing markedly reduced HSC activation. HuR regulated platelet-derived growth factor (PDGF)-induced proliferation and migration and controlled the expression of several mRNAs involved in these processes (e.g., Actin, matrix metalloproteinase 9, and cyclin D1 and B1). These functions of HuR were linked to its abundance and cytoplasmic localization, controlled by PDGF, by extracellular signal-regulated kinases (ERK) and phosphatidylinositol 3-kinase activation as well as ERK/LKB1 (liver kinase B1) activation, respectively. More important, we identified the tumor suppressor, LKB1, as a novel downstream target of PDGF-induced ERK activation in HSCs. HuR also controlled transforming growth factor beta (TGF-ß)-induced profibrogenic actions by regulating the expression of TGF-ß, α-SMA, and p21. This was likely the result of an increased cytoplasmic localization of HuR, controlled by TGF-ß-induced p38 mitogen-activated protein kinase activation. Finally, we found that HuR and LKB1 (Ser428) levels were highly expressed in activated HSCs in human cirrhotic samples. CONCLUSION: Our results show that HuR is important for the pathogenesis of liver fibrosis development in the cholestatic injury model, for HSC activation, and for the response of activated HSC to PDGF and TGF-ß.


Assuntos
Antígenos de Superfície/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Actinas/metabolismo , Animais , Antígenos de Superfície/genética , Butadienos/farmacologia , Tetracloreto de Carbono , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ducto Colédoco , Proteínas ELAV , Proteína Semelhante a ELAV 1 , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/fisiologia , Humanos , Ligadura , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Camundongos , Nitrilas/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Ratos , Fator de Crescimento Transformador beta/metabolismo
9.
Hepatology ; 55(4): 1237-48, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22095636

RESUMO

UNLABELLED: Hu antigen R (HuR) is a central RNA-binding protein regulating cell dedifferentiation, proliferation, and survival, which are well-established hallmarks of cancer. HuR is frequently overexpressed in tumors correlating with tumor malignancy, which is in line with a role for HuR in tumorigenesis. However, the precise mechanism leading to changes in HuR expression remains unclear. In the liver, HuR plays a crucial role in hepatocyte proliferation, differentiation, and transformation. Here, we unraveled a novel mean of regulation of HuR expression in hepatocellular carcinoma (HCC) and colon cancer. HuR levels correlate with the abundance of the oncogene, murine double minute 2 (Mdm2), in human HCC and colon cancer metastases. HuR is stabilized by Mdm2-mediated NEDDylation in at least three lysine residues, ensuring its nuclear localization and protection from degradation. CONCLUSION: This novel Mdm2/NEDD8/HuR regulatory framework is essential for the malignant transformation of tumor cells, which, in turn, unveils a novel signaling paradigm that is pharmacologically amenable for cancer therapy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias do Colo/metabolismo , Proteínas ELAV/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ubiquitinas/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/patologia , Citoplasma/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína NEDD8 , Transdução de Sinais/fisiologia
10.
Cell Metab ; 35(9): 1630-1645.e5, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541251

RESUMO

Neddylation is a post-translational mechanism that adds a ubiquitin-like protein, namely neural precursor cell expressed developmentally downregulated protein 8 (NEDD8). Here, we show that neddylation in mouse liver is modulated by nutrient availability. Inhibition of neddylation in mouse liver reduces gluconeogenic capacity and the hyperglycemic actions of counter-regulatory hormones. Furthermore, people with type 2 diabetes display elevated hepatic neddylation levels. Mechanistically, fasting or caloric restriction of mice leads to neddylation of phosphoenolpyruvate carboxykinase 1 (PCK1) at three lysine residues-K278, K342, and K387. We find that mutating the three PCK1 lysines that are neddylated reduces their gluconeogenic activity rate. Molecular dynamics simulations show that neddylation of PCK1 could re-position two loops surrounding the catalytic center into an open configuration, rendering the catalytic center more accessible. Our study reveals that neddylation of PCK1 provides a finely tuned mechanism of controlling glucose metabolism by linking whole nutrient availability to metabolic homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Fosfoenolpiruvato/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Glucose/metabolismo
11.
Front Cell Neurosci ; 16: 992221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159399

RESUMO

Background: Neuropathic pain is one of the most difficult to treat chronic pain syndromes. It has significant effects on patients' quality of life and substantially adds to the burden of direct and indirect medical costs. There is a critical need to improve therapies for peripheral nerve regeneration. The aim of this study is to address this issue by performing a detailed analysis of the therapeutic benefits of two treatment options: adipose tissue derived-mesenchymal stem cells (ASCs) and ASC-conditioned medium (CM). Methods: To this end, we used an in vivo rat sciatic nerve damage model to investigate the molecular mechanisms involved in the myelinating capacity of ASCs and CM. Furthermore, effect of TNF and CM on Schwann cells (SCs) was evaluated. For our in vivo model, biomaterial surgical implants containing TNF were used to induce peripheral neuropathy in rats. Damaged nerves were also treated with either ASCs or CM and molecular methods were used to collect evidence of nerve regeneration. Post-operatively, rats were subjected to walking track analysis and their sciatic functional index was evaluated. Morphological data was gathered through transmission electron microscopy (TEM) of sciatic nerves harvested from the experimental rats. We also evaluated the effect of TNF on Schwann cells (SCs) in vitro. Genes and their correspondent proteins associated with nerve regeneration were analyzed by qPCR, western blot, and confocal microscopy. Results: Our data suggests that both ASCs and CM are potentially beneficial treatments for promoting myelination and axonal regeneration. After TNF-induced nerve damage we observed an upregulation of c-Jun along with a downregulation of Krox-20 myelin-associated transcription factor. However, when CM was added to TNF-treated nerves the opposite effect occurred and also resulted in increased expression of myelin-related genes and their corresponding proteins. Conclusion: Findings from our in vivo model showed that both ASCs and CM aided the regeneration of axonal myelin sheaths and the remodeling of peripheral nerve morphology.

12.
Adv Drug Deliv Rev ; 181: 114088, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942276

RESUMO

The Human antigen R (HuR) protein is an RNA-binding protein, ubiquitously expressed in human tissues, that orchestrates target RNA maturation and processing both in the nucleus and in the cytoplasm. A survey of known modulators of the RNA-HuR interactions is followed by a description of its structure and molecular mechanism of action - RRM domains, interactions with RNA, dimerization, binding modes with naturally occurring and synthetic HuR inhibitors. Then, the review focuses on HuR as a validated molecular target in oncology and briefly describes its role in inflammation. Namely, we show ample evidence for the involvement of HuR in the hallmarks and enabling characteristics of cancer, reporting findings from in vitro and in vivo studies; and we provide abundant experimental proofs of a beneficial role for the inhibition of HuR-mRNA interactions through silencing (CRISPR, siRNA) or pharmacological inhibition (small molecule HuR inhibitors).


Assuntos
Proteína Semelhante a ELAV 1/antagonistas & inibidores , Proteína Semelhante a ELAV 1/metabolismo , Neoplasias/fisiopatologia , RNA/metabolismo , RNA/farmacologia , Animais , Sistemas de Liberação de Medicamentos/métodos , Inativação Gênica , Humanos , Mediadores da Inflamação/metabolismo , Peso Molecular , Neoplasias/tratamento farmacológico , RNA Mensageiro/farmacologia , RNA Interferente Pequeno/farmacologia
13.
Gastroenterology ; 138(5): 1943-53, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20102719

RESUMO

BACKGROUND & AIMS: Hepatic de-differentiation, liver development, and malignant transformation are processes in which the levels of hepatic S-adenosylmethionine are tightly regulated by 2 genes: methionine adenosyltransferase 1A (MAT1A) and methionine adenosyltransferase 2A (MAT2A). MAT1A is expressed in the adult liver, whereas MAT2A expression primarily is extrahepatic and is associated strongly with liver proliferation. The mechanisms that regulate these expression patterns are not completely understood. METHODS: In silico analysis of the 3' untranslated region of MAT1A and MAT2A revealed putative binding sites for the RNA-binding proteins AU-rich RNA binding factor 1 (AUF1) and HuR, respectively. We investigated the posttranscriptional regulation of MAT1A and MAT2A by AUF1, HuR, and methyl-HuR in the aforementioned biological processes. RESULTS: During hepatic de-differentiation, the switch between MAT1A and MAT2A coincided with an increase in HuR and AUF1 expression. S-adenosylmethionine treatment altered this homeostasis by shifting the balance of AUF1 and methyl-HuR/HuR, which was identified as an inhibitor of MAT2A messenger RNA (mRNA) stability. We also observed a similar temporal distribution and a functional link between HuR, methyl-HuR, AUF1, and MAT1A and MAT2A during fetal liver development. Immunofluorescent analysis revealed increased levels of HuR and AUF1, and a decrease in methyl-HuR levels in human livers with hepatocellular carcinoma (HCC). CONCLUSIONS: Our data strongly support a role for AUF1 and HuR/methyl-HuR in liver de-differentiation, development, and human HCC progression through the posttranslational regulation of MAT1A and MAT2A mRNAs.


Assuntos
Antígenos de Superfície/metabolismo , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Hepatócitos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Neoplasias Hepáticas/metabolismo , Metionina Adenosiltransferase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Animais , Antígenos de Superfície/genética , Sítios de Ligação , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Cultivadas , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Idade Gestacional , Glicina N-Metiltransferase/deficiência , Glicina N-Metiltransferase/genética , Meia-Vida , Hepatócitos/patologia , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Metionina Adenosiltransferase/genética , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Ratos Wistar , S-Adenosilmetionina/metabolismo , Transdução de Sinais , Transfecção
14.
Hepatology ; 52(5): 1621-31, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20815019

RESUMO

UNLABELLED: LKB1, originally considered a tumor suppressor, plays an important role in hepatocyte proliferation and liver regeneration. Mice lacking the methionine adenosyltransferase (MAT) gene MAT1A exhibit a chronic reduction in hepatic S-adenosylmethionine (SAMe) levels, basal activation of LKB1, and spontaneous development of nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). These results are relevant for human health because patients with liver cirrhosis, who are at risk to develop HCC, have a marked reduction in hepatic MAT1A expression and SAMe synthesis. In this study, we isolated a cell line (SAMe-deficient [SAMe-D]) from MAT1A knockout (MAT1A-KO) mouse HCC to examine the role of LKB1 in the development of liver tumors derived from metabolic disorders. We found that LKB1 is required for cell survival in SAMe-D cells. LKB1 regulates Akt-mediated survival independent of phosphoinositide 3-kinase, adenosine monophosphate protein-activated kinase (AMPK), and mammalian target of rapamycin complex (mTORC2). In addition, LKB1 controls the apoptotic response through phosphorylation and retention of p53 in the cytoplasm and the regulation of herpesvirus-associated ubiquitin-specific protease (HAUSP) and Hu antigen R (HuR) nucleocytoplasmic shuttling. We identified HAUSP as a target of HuR. Finally, we observed cytoplasmic staining of p53 and p-LKB1(Ser428) in a NASH-HCC animal model (from MAT1A-KO mice) and in liver biopsies obtained from human HCC derived from both alcoholic steatohepatitis and NASH. CONCLUSION: The SAMe-D cell line is a relevant model of HCC derived from NASH disease in which LKB1 is the principal conductor of a new regulatory mechanism and could be a practical tool for uncovering new therapeutic strategies.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Divisão Celular , Ativação Enzimática , Inativação Gênica , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metionina Adenosiltransferase/deficiência , Metionina Adenosiltransferase/genética , Camundongos , Camundongos Knockout , Fosforilação , Reação em Cadeia da Polimerase , RNA Neoplásico/genética , RNA Neoplásico/isolamento & purificação
15.
Dev Neurobiol ; 81(5): 490-506, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32628805

RESUMO

Axons share a close relationship with Schwann cells, their glial partners in peripheral nerves. An intricate axo-glia network of signals and bioactive molecules regulates the major aspects of nerve development and normal functioning of the peripheral nervous system. Disruptions to these complex axo-glial interactions can have serious neurological consequences, as typically seen in injured nerves. Recent studies in inherited neuropathies have demonstrated that damage to one of the partners in this symbiotic unit ultimately leads to impairment of the other partner, emphasizing the bidirectional influence of axon to glia and glia to axon signaling in these diseases. After physical trauma to nerves, dramatic alterations in the architecture and signaling environment of peripheral nerves take place. Here, axons and Schwann cells respond adaptively to these perturbations and change the nature of their reciprocal interactions, thereby driving the remodeling and regeneration of peripheral nerves. In this review, we focus on the nature and importance of axon-glia interactions in injured nerves, both for the reshaping and repair of nerves after trauma, and in driving pathology in inherited peripheral neuropathies.


Assuntos
Doenças do Sistema Nervoso Periférico , Axônios/fisiologia , Humanos , Regeneração Nervosa , Neuroglia/fisiologia , Sistema Nervoso Periférico , Células de Schwann/fisiologia
16.
Nat Commun ; 12(1): 5068, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417460

RESUMO

p53 regulates several signaling pathways to maintain the metabolic homeostasis of cells and modulates the cellular response to stress. Deficiency or excess of nutrients causes cellular metabolic stress, and we hypothesized that p53 could be linked to glucose maintenance. We show here that upon starvation hepatic p53 is stabilized by O-GlcNAcylation and plays an essential role in the physiological regulation of glucose homeostasis. More specifically, p53 binds to PCK1 promoter and regulates its transcriptional activation, thereby controlling hepatic glucose production. Mice lacking p53 in the liver show a reduced gluconeogenic response during calorie restriction. Glucagon, adrenaline and glucocorticoids augment protein levels of p53, and administration of these hormones to p53 deficient human hepatocytes and to liver-specific p53 deficient mice fails to increase glucose levels. Moreover, insulin decreases p53 levels, and over-expression of p53 impairs insulin sensitivity. Finally, protein levels of p53, as well as genes responsible of O-GlcNAcylation are elevated in the liver of type 2 diabetic patients and positively correlate with glucose and HOMA-IR. Overall these results indicate that the O-GlcNAcylation of p53 plays an unsuspected key role regulating in vivo glucose homeostasis.


Assuntos
Acetilglucosamina/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Sequência de Bases , Restrição Calórica , Linhagem Celular , Colforsina/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Epinefrina/metabolismo , Glucagon/metabolismo , Glucocorticoides/metabolismo , Gluconeogênese/efeitos dos fármacos , Glicosilação , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hidrocortisona/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Obesidade/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Ácido Pirúvico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
17.
Cancer Res ; 81(11): 2874-2887, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771899

RESUMO

Lipid metabolism rearrangements in nonalcoholic fatty liver disease (NAFLD) contribute to disease progression. NAFLD has emerged as a major risk for hepatocellular carcinoma (HCC), where metabolic reprogramming is a hallmark. Identification of metabolic drivers might reveal therapeutic targets to improve HCC treatment. Here, we investigated the contribution of transcription factors E2F1 and E2F2 to NAFLD-related HCC and their involvement in metabolic rewiring during disease progression. In mice receiving a high-fat diet (HFD) and diethylnitrosamine (DEN) administration, E2f1 and E2f2 expressions were increased in NAFLD-related HCC. In human NAFLD, E2F1 and E2F2 levels were also increased and positively correlated. E2f1 -/- and E2f2 -/- mice were resistant to DEN-HFD-induced hepatocarcinogenesis and associated lipid accumulation. Administration of DEN-HFD in E2f1 -/- and E2f2 -/- mice enhanced fatty acid oxidation (FAO) and increased expression of Cpt2, an enzyme essential for FAO, whose downregulation is linked to NAFLD-related hepatocarcinogenesis. These results were recapitulated following E2f2 knockdown in liver, and overexpression of E2f2 elicited opposing effects. E2F2 binding to the Cpt2 promoter was enhanced in DEN-HFD-administered mouse livers compared with controls, implying a direct role for E2F2 in transcriptional repression. In human HCC, E2F1 and E2F2 expressions inversely correlated with CPT2 expression. Collectively, these results indicate that activation of the E2F1-E2F2-CPT2 axis provides a lipid-rich environment required for hepatocarcinogenesis. SIGNIFICANCE: These findings identify E2F1 and E2F2 transcription factors as metabolic drivers of hepatocellular carcinoma, where deletion of just one is sufficient to prevent disease. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/11/2874/F1.large.jpg.


Assuntos
Carcinoma Hepatocelular/patologia , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/metabolismo , Lipídeos/análise , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Carcinógenos , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F2/genética , Regulação da Expressão Gênica , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prognóstico , Regiões Promotoras Genéticas
18.
J Clin Invest ; 130(7): 3848-3864, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315290

RESUMO

Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/ß-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment.


Assuntos
Carcinogênese/metabolismo , Proliferação de Células , Proteína Semelhante a ELAV 1/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de Bainha Neural/metabolismo , Transdução de Sinais , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proteína Semelhante a ELAV 1/genética , Humanos , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia
19.
Glia ; 56(14): 1481-1490, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18803317

RESUMO

The myelinating and nonmyelinating Schwann cells in peripheral nerves are derived from the neural crest, which is a transient and multipotent embryonic structure that also generates the other main glial subtypes of the peripheral nervous system (PNS). Schwann cell development occurs through a series of transitional embryonic and postnatal phases, which are tightly regulated by a number of signals. During the early embryonic phases, neural crest cells are specified to give rise to Schwann cell precursors, which represent the first transitional stage in the Schwann cell lineage, and these then generate the immature Schwann cells. At birth, the immature Schwann cells differentiate into either the myelinating or nonmyelinating Schwann cells that populate the mature nerve trunks. In this review, we will discuss the biology of the transitional stages in embryonic and early postnatal Schwann cell development, including the phenotypic differences between them and the recently identified signaling pathways, which control their differentiation and maintenance. In addition, the role and importance of the microenvironment in which glial differentiation takes place will be discussed.


Assuntos
Linhagem da Célula/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Crista Neural/embriologia , Sistema Nervoso Periférico/embriologia , Células de Schwann/metabolismo , Animais , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Humanos , Fibras Nervosas Mielinizadas/ultraestrutura , Crista Neural/citologia , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/crescimento & desenvolvimento , Células de Schwann/citologia , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo
20.
J Peripher Nerv Syst ; 13(2): 122-35, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18601657

RESUMO

Immature Schwann cells found in perinatal rodent nerves are generated from Schwann cell precursors (SCPs) that originate from the neural crest. Immature Schwann cells generate the myelinating and non-myelinating Schwann cells of adult nerves. When axons degenerate following injury, Schwann cells demyelinate, proliferate and dedifferentiate to assume a molecular phenotype similar to that of immature cells, a process essential for successful nerve regeneration. Increasing evidence indicates that Schwann cell dedifferentiation involves activation of specific receptors, intracellular signalling pathways and transcription factors in a manner analogous to myelination. We have investigated the roles of Notch and the transcription factor c-Jun in development and after nerve transection. In vivo, Notch signalling regulates the transition from SCP to Schwann cell, times Schwann cell generation, controls Schwann cell proliferation and acts as a brake on myelination. Notch is elevated in injured nerves where it accelerates the rate of dedifferentiation. Likewise, the transcription factor c-Jun is required for Schwann cell proliferation and death and is down-regulated by Krox-20 on myelination. Forced expression of c-Jun in Schwann cells prevents myelination, and in injured nerves, c-Jun is required for appropriate dedifferentiation, the re-emergence of the immature Schwann cell state and nerve regeneration. Thus, both Notch and c-Jun are negative regulators of myelination. The growing realisation that myelination is subject to negative as well as positive controls and progress in molecular identification of negative regulators is likely to impact on our understanding of demyelinating disease and mechanisms that control nerve repair.


Assuntos
Desdiferenciação Celular/fisiologia , Diferenciação Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Bainha de Mielina/fisiologia , Células de Schwann/fisiologia , Transdução de Sinais/fisiologia , Animais , Doenças Desmielinizantes/embriologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Humanos , Bainha de Mielina/ultraestrutura , Células de Schwann/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA