Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(3): e23457, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318648

RESUMO

Aging is associated with chronic, low-level inflammation which may contribute to cardiovascular pathologies such as hypertension and atherosclerosis. This chronic inflammation may be opposed by endogenous mechanisms to limit inflammation, for example, by the actions of annexin A1 (ANXA1), an endogenous glucocorticoid-regulated protein that has anti-inflammatory and pro-resolving activity. We hypothesized the pro-resolving mediator ANXA1 protects against age-induced changes in blood pressure (BP), cardiovascular structure and function, and cardiac senescence. BP was measured monthly in conscious mature (4-month) and middle-aged (12-month) ANXA1-deficient (ANXA1-/- ) and wild-type C57BL/6 mice. Body composition was measured using EchoMRI, and both cardiac and vascular function using ultrasound imaging. Cardiac hypertrophy, fibrosis and senescence, vascular fibrosis, elastin, and calcification were assessed histologically. Gene expression relevant to structural remodeling, inflammation, and cardiomyocyte senescence were also quantified. In C57BL/6 mice, progression from 4 to 12 months of age did not affect the majority of cardiovascular parameters measured, with the exception of mild cardiac hypertrophy, vascular calcium, and collagen deposition. Interestingly, ANXA1-/- mice exhibited higher BP, regardless of age. Additionally, age progression had a marked impact in ANXA1-/- mice, with markedly augmented vascular remodeling, impaired vascular distensibility, and body composition. Consistent with vascular dysfunction, cardiac dysfunction, and hypertrophy were also evident, together with markers of senescence and inflammation. These findings suggest that endogenous ANXA1 plays a critical role in regulating BP, cardiovascular function, and remodeling and delays cardiac senescence. Our findings support the development of novel ANXA1-based therapies to prevent age-related cardiovascular pathologies.


Assuntos
Anexina A1 , Pressão Sanguínea , Remodelação Vascular , Animais , Camundongos , Anexina A1/genética , Anexina A1/metabolismo , Cardiomegalia , Fibrose , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Am J Physiol Heart Circ Physiol ; 324(2): H241-H257, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607798

RESUMO

Left ventricular (LV) dysfunction is an early, clinically detectable sign of cardiomyopathy in type 2 diabetes mellitus (T2DM) that precedes the development of symptomatic heart failure. Preclinical models of diabetic cardiomyopathy are essential to develop therapies that may prevent or delay the progression of heart failure. This study examined the molecular, structural, and functional cardiac phenotype of two rat models of T2DM induced by a high-fat diet (HFD) with a moderate- or high-sucrose content (containing 88.9 or 346 g/kg sucrose, respectively), plus administration of low-dose streptozotocin (STZ). At 8 wk of age, male Sprague-Dawley rats commenced a moderate- or high-sucrose HFD. Two weeks later, rats received low-dose STZ (35 mg/kg ip for 2 days) and remained on their respective diets. LV function was assessed by echocardiography 1 wk before end point. At 22 wk of age, blood and tissues were collected postmortem. Relative to chow-fed sham rats, diabetic rats on a moderate- or high-sucrose HFD displayed cardiac reactive oxygen species dysregulation, perivascular fibrosis, and impaired LV diastolic function. The diabetes-induced impact on LV adverse remodeling and diastolic dysfunction was more apparent when a high-sucrose HFD was superimposed on STZ. In conclusion, a high-sucrose HFD in combination with low-dose STZ produced a cardiac phenotype that more closely resembled T2DM-induced cardiomyopathy than STZ diabetic rats subjected to a moderate-sucrose HFD.NEW & NOTEWORTHY Left ventricular dysfunction and adverse remodeling were more pronounced in diabetic rats that received low-dose streptozotocin (STZ) and a high-sucrose high-fat diet (HFD) compared with those on a moderate-sucrose HFD in combination with STZ. Our findings highlight the importance of sucrose content in diet composition, particularly in preclinical studies of diabetic cardiomyopathy, and demonstrate that low-dose STZ combined with a high-sucrose HFD is an appropriate rodent model of cardiomyopathy in type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Ratos , Masculino , Animais , Estreptozocina/efeitos adversos , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Experimental/induzido quimicamente , Ratos Sprague-Dawley , Dieta Hiperlipídica/efeitos adversos , Fenótipo
3.
Pharmacol Res ; 133: 152-159, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29787869

RESUMO

The aim of this study was to better understand the role of TRPV4 in the regulation of blood vessel dilatation by blood flow and activation of GPCRs. Using pressure myography, the dilator responses to the TRPV4 agonist GSK1016790A and to acetylcholine, were examined in rat cremaster arterioles exposed to either no shear stress or to 200 µl/min flow for 6 min. In control vessels GSK1016709A caused vasodilatation (pEC50 7.73 ±â€¯0.12 M, ΔDmax 97 ±â€¯3%) which was significantly attenuated by the TRPV4 antagonists GSK2193874 (100 nM) (pEC50 6.19 ±â€¯0.11 M, p < 0.05) and HC067047 (300 nM) (pEC50 6.44 ±â€¯0.12 M) and abolished by removal of the endothelium. Shear conditioned arterioles were significantly more sensitive to GSK1016790A (pEC50 8.34 ±â€¯0.11, p < 0.05). Acetylcholine-induced vasodilatation (pEC50 7.02 ±â€¯0.07 M, ΔDmax 93 ±â€¯2%) was not affected by shear forces (pEC50 7.08 ±â€¯0.07 M, ΔDmax 95 ±â€¯1%). The dilator response to acetylcholine was unaffected by the TRPV4 antagonist GSK2193874 in control arterioles (pEC50 7.24 ±â€¯0.07 M, ΔDmax 97 ±â€¯2%). However, in shear treated arterioles, the acetylcholine-response was significantly attenuated by GSK2193874 (pEC50 6.25 ±â€¯0.12 M, p < 0.05) indicating an induced interaction between TRPV4 and muscarinic receptors. TRPV4 antibodies localized TRPV4 to the endothelium and shear stress had no effect on its localisation. Finally, agonist activation of the M3 muscarinic receptor opened TRPV4 in HEK293 cells. We concluded that shear stress increases endothelial TRPV4 agonist sensitivity and links TRPV4 activation to muscarinic receptor mediated endothelium-dependent vasodilatation, providing strong evidence that blood flow modulates downstream signalling from at least one but not all GPCRs expressed in the endothelium.


Assuntos
Músculos Abdominais/irrigação sanguínea , Arteríolas/fisiologia , Canais de Cátion TRPV/fisiologia , Vasodilatação/fisiologia , Animais , Endotélio Vascular/fisiologia , Células HEK293 , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Masculino , Ratos Wistar , Receptor Muscarínico M3/fisiologia , Estresse Mecânico , Sulfonamidas/farmacologia , Canais de Cátion TRPV/agonistas
4.
Pharmacol Res ; 104: 165-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26747404

RESUMO

Available inotropic pharmacotherapy for acute heart failure (HF) remains largely ineffective at ameliorating marked impairments in contractile function. Nitroxyl (HNO), the redox sibling of NO•, has recently attracted interest as a therapeutic approach for acute HF. We now compare the impact of ischaemia-reperfusion (I-R) injury on acute haemodynamic responsiveness of the HNO donor, Angeli's salt (AS), to that of NO and dobutamine. Dose-response curves to bolus doses of AS, diethylamine NONOate (DEA/NO, both 0.001-µmol) and dobutamine (0.1-100 nmol) were performed in rat isolated hearts, following I-R or normoxic perfusion. An additional 10µmol dose of Angeli's salt was included, to permit roughly equivalent inotropic responses to dobutamine. Changes in cardiac contraction, heart rate and coronary flow (CF) were determined. Although AS and DEA/NO elicited comparable dose-dependent increases in CF in normoxic hearts, only AS vasodilation was preserved after I-R. AS and dobutamine elicited dose-dependent inotropic responses in normoxic hearts and I-R blunted inotropic responses to both. Dobutamine however increased heart rate, which was exacerbated by I-R; this was not evident with AS. Further, AS infusion during reperfusion (1µM), in a separate cohort of rat hearts, improved recovery of cardiac contractility, with lower incidence of I-R-induced ventricular fibrillation. In conclusion, these observations suggest that HNO offers haemodynamic advantages over NO following I-R. Although I-R suppresses inotropy to both agents, residual contractile responses to AS following I-R is likely free of concomitant pro-arrhythmic events. HNO donors may thus offer haemodynamic advantages over existing pharmacotherapy in acute HF.


Assuntos
Cardiotônicos/farmacologia , Coração/efeitos dos fármacos , Nitritos/farmacologia , Óxidos de Nitrogênio , Traumatismo por Reperfusão/fisiopatologia , Animais , Dobutamina/farmacologia , Coração/fisiopatologia , Hemodinâmica , Masculino , Contração Miocárdica , Óxido Nítrico/fisiologia , Doadores de Óxido Nítrico/farmacologia , Ratos Sprague-Dawley
5.
J Cardiovasc Pharmacol ; 65(6): 532-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25387248

RESUMO

As flavonols are present in fruits and vegetables, they are consumed in considerable amounts in the diet. There is growing evidence that the well-recognized antioxidant, anti-inflammatory, and vasorelaxant actions of flavonols may, at least in part, result from modulation of biochemical signaling pathways and kinases. It is well established that diabetes is associated with increased cardiovascular morbidity and mortality. Despite clinical management of blood glucose levels, diabetes often results in cardiovascular disease. There is good evidence that endothelial dysfunction contributes significantly to the progression of diabetic cardiovascular diseases. This review describes the biological actions of flavonols that may ameliorate adverse cardiovascular events in diabetes. We discuss evidence that flavonols may be developed as novel pharmacological agents to prevent diabetes-induced vascular dysfunction.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Angiopatias Diabéticas/prevenção & controle , Endotélio Vascular/efeitos dos fármacos , Flavonóis/uso terapêutico , Hipoglicemiantes/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/uso terapêutico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/uso terapêutico
6.
Biochem J ; 456(2): 149-61, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24032640

RESUMO

DiOHF (3',4'-dihydroxyflavonol) is cardioprotective against I/R (ischaemia/reperfusion) injury. The biological activities of flavonols are associated with kinase modulation to alter cell signalling. We thus investigated the effects of DiOHF on the activation of MAPKs (mitogen-activated protein kinases) that regulate the cardiac stress response. In an ovine model of I/R, JNK (c-Jun N-terminal kinase), p38(MAPK), ERK (extracellular-signal-regulated kinase) and Akt were activated, and NP202, a pro-drug of DiOHF, reduced infarct size and inhibited JNK and p38(MAPK) activation, whereas ERK and Akt phosphorylation were unaltered. Similarly, in cultured myoblasts, DiOHF pre-treatment preserved viability and inhibited activation of JNK and p38(MAPK), but not ERK in response to acute oxidative and chemotoxic stress. Furthermore, DiOHF prevented stress-activation of the direct upstream regulators MKK4/7 (MAPK kinase 4/7) and MKK3/6 respectively. We utilized small-molecule affinity purification and identified CaMKII (Ca(2+)/calmodulin-dependent protein kinase II) as a kinase targeted by DiOHF and demonstrated potent CaMKII inhibition by DiOHF in vitro. Moreover, the specific inhibition of CaMKII with KN-93, but not KN-92, prevented oxidative stress-induced activation of JNK and p38(MAPK). The present study indicates DiOHF inhibition of CaMKII and attenuation of MKK3/6→p38(MAPK) and MKK4/7→JNK signalling as a requirement for the protective effects of DiOHF against stress stimuli and myocardial I/R injury.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Cardiotônicos/farmacologia , Flavonóis/farmacologia , Sistema de Sinalização das MAP Quinases , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Arsenitos/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Peróxido de Hidrogênio/farmacologia , MAP Quinase Quinase 4/metabolismo , Camundongos , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos , Carneiro Doméstico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Mucosal Immunol ; 17(4): 651-672, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38614323

RESUMO

Excessive inflammatory responses are the main characteristic of ulcerative colitis (UC). Activation of formyl peptide receptor 1 (FPR1) has been found to promote the proliferation and migration of epithelial cells, but its role and therapeutic potential in UC remain unclear. This study observed an increased expression of FPR1 in a mouse model of colitis. Interestingly, FPR1 deficiency exacerbated UC and increased the secretion of the proinflammatory mediator from immune cells (e.g. macrophages), S100a8, a member of the damage-associated molecular patterns. Notably, the administration of the FPR agonist Cmpd43 ameliorated colon injury in a preclinical mice model of UC, likely via inhibiting phosphorylation of cyclic adenosine monophosphate-response element-binding protein and expression of CCAAT/enhancer-binding protein ß, which in turn suppressed the secretion of S100a8. In conclusion, these findings discovered a novel role of FPR1 in the development of colitis and will facilitate the development of FPR1-based pharmacotherapy to treat UC.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Calgranulina A , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Modelos Animais de Doenças , Homeostase , Mucosa Intestinal , Camundongos Knockout , Receptores de Formil Peptídeo , Transdução de Sinais , Animais , Receptores de Formil Peptídeo/metabolismo , Receptores de Formil Peptídeo/genética , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Calgranulina A/metabolismo , Calgranulina A/genética , Colite/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Colo/metabolismo , Colo/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/imunologia , Colite Ulcerativa/tratamento farmacológico
8.
Cardiovasc Res ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879891

RESUMO

AIMS: Formylpeptide receptors (FPRs) play a critical role in the regulation of inflammation, an important driver of hypertension-induced end-organ damage. We have previously reported that the biased FPR small-molecule agonist, compound17b (Cmpd17b), is cardioprotective against acute, severe inflammatory insults. Here, we reveal the first compelling evidence of the therapeutic potential of this novel FPR agonist against a longer-term, sustained inflammatory insult, i.e. hypertension-induced end-organ damage. The parallels between the murine and human hypertensive proteome were also investigated. METHODS AND RESULTS: The hypertensive response to angiotensin II (Ang II, 0.7 mg/kg/day, s.c.) was attenuated by Cmpd17b (50 mg/kg/day, i.p.). Impairments in cardiac and vascular function assessed via echocardiography were improved by Cmpd17b in hypertensive mice. This functional improvement was accompanied by reduced cardiac and aortic fibrosis and vascular calcification. Cmpd17b also attenuated Ang II-induced increased cardiac mitochondrial complex 2 respiration. Proteomic profiling of cardiac and aortic tissues and cells, using label-free nano-liquid chromatography with high-sensitivity mass spectrometry, detected and quantified ∼6000 proteins. We report hypertension-impacted protein clusters associated with dysregulation of inflammatory, mitochondrial, and calcium responses, as well as modified networks associated with cardiovascular remodelling, contractility, and structural/cytoskeletal organization. Cmpd17b attenuated hypertension-induced dysregulation of multiple proteins in mice, and of these, ∼110 proteins were identified as similarly dysregulated in humans suffering from adverse aortic remodelling and cardiac hypertrophy. CONCLUSION: We have demonstrated, for the first time, that the FPR agonist Cmpd17b powerfully limits hypertension-induced end-organ damage, consistent with proteome networks, supporting development of pro-resolution FPR-based therapeutics for treatment of systemic hypertension complications.

9.
Br J Pharmacol ; 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154373

RESUMO

BACKGROUND: There is increasing interest in developing FPR2 agonists (compound 43, ACT-389949 and BMS-986235) as potential pro-resolving therapeutics, with ACT-389949 and BMS-986235 having entered phase I clinical development. FPR2 activation leads to diverse downstream outputs. ACT-389949 was observed to cause rapid tachyphylaxis, while BMS-986235 and compound 43 induced cardioprotective effects in preclinical models. We aim to characterise the differences in ligand-receptor engagement and downstream signalling and trafficking bias profile. EXPERIMENTAL APPROACH: Concentration-response curves to G protein dissociation, ß-arrestin recruitment, receptor trafficking and second messenger signalling were generated using FPR2 ligands (BMS-986235, ACT-389949, compound 43 and WKYMVm), in HEK293A cells. Log(τ/KA) was obtained from the operational model for bias analysis using WKYMVm as a reference ligand. Docking of FPR2 ligands into the active FPR2 cryoEM structure (PDBID: 7T6S) was performed using ICM pro software. KEY RESULTS: Bias analysis revealed that WKYMVm and ACT-389949 shared a very similar bias profile. In comparison, BMS-986235 and compound 43 displayed approximately 5- to 50-fold bias away from ß-arrestin recruitment and trafficking pathways, while being 35- to 60-fold biased towards cAMP inhibition and pERK1/2. Molecular docking predicted key amino acid interactions at the FPR2 shared between WKYMVm and ACT-389949, but not with BMS-986235 and compound 43. CONCLUSION AND IMPLICATIONS: In vitro characterisation demonstrated that WKYMVm and ACT-389949 differ from BMS-986235 and compound 43 in their signalling and protein coupling profile. This observation may be explained by differences in the ligand-receptor interactions. In vitro characterisation provided significant insights into identifying the desired bias profile for FPR2-based pharmacotherapy.

10.
Am J Physiol Heart Circ Physiol ; 304(5): H729-39, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23262135

RESUMO

Rats selectively bred for low (LCR) or high (HCR) intrinsic running capacity simultaneously present with contrasting risk factors for cardiovascular and metabolic disease. However, the impact of these phenotypes on left ventricular (LV) morphology and microvascular function, and their progression with aging, remains unresolved. We tested the hypothesis that the LCR phenotype induces progressive age-dependent LV remodeling and impairments in microvascular function, glucose utilization, and ß-adrenergic responsiveness, compared with HCR. Hearts and vessels isolated from female LCR (n = 22) or HCR (n = 26) were studied at 12 and 35 wk. Nonselected N:NIH founder rats (11 wk) were also investigated (n = 12). LCR had impaired glucose tolerance and elevated plasma insulin (but not glucose) and body-mass at 12 wk compared with HCR, with early LV remodeling. By 35 wk, LV prohypertrophic and glucose transporter GLUT4 gene expression were up- and downregulated, respectively. No differences in LV ß-adrenoceptor expression or cAMP content between phenotypes were observed. Macrovascular endothelial function was predominantly nitric oxide (NO)-mediated in both phenotypes and remained intact in LCR for both age-groups. In contrast, mesenteric arteries microvascular endothelial function, which was impaired in LCR rats regardless of age. At 35 wk, endothelial-derived hyperpolarizing factor-mediated relaxation was impaired whereas the NO contribution to relaxation is intact. Furthermore, there was reduced ß2-adrenoceptor responsiveness in both aorta and mesenteric LCR arteries. In conclusion, diminished intrinsic exercise capacity impairs systemic glucose tolerance and is accompanied by progressive development of LV remodeling. Impaired microvascular perfusion is a likely contributing factor to the cardiac phenotype.


Assuntos
Envelhecimento/fisiologia , Circulação Coronária/fisiologia , Tolerância ao Exercício/fisiologia , Coração/fisiologia , Remodelação Ventricular/fisiologia , Envelhecimento/genética , Animais , Fatores Biológicos/metabolismo , Tolerância ao Exercício/genética , Feminino , Fibrose/fisiopatologia , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Síndrome Metabólica/genética , Síndrome Metabólica/fisiopatologia , Microcirculação/fisiologia , Miócitos Cardíacos/fisiologia , Óxido Nítrico/metabolismo , Fenótipo , Ratos , Ratos Endogâmicos , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/fisiologia , Resistência Vascular/fisiologia , Vasodilatação/fisiologia , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
11.
Platelets ; 24(8): 594-604, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23249183

RESUMO

Flavonols are polyphenolic compounds with broad-spectrum kinase inhibitory, as well as potent anti-oxidant and anti-inflammatory properties. Anti-platelet potential of quercetin (Que) and several related flavonoids have been reported; however, few studies have assessed the ability of flavonols to inhibit exocytosis of different platelet granules or to inhibit thrombus formation in vivo. 3',4'-Dihydroxyflavonol (DiOHF) is a flavonol which is structurally related to Que and has been shown to have greater anti-oxidant capacity and to improve the endothelial function in the context of diabetes and ischaemia/reperfusion injury. While the structural similarity to Que suggests DiOHF may have a potential to inhibit platelet function, no studies have assessed the anti-platelet potential of DiOHF. We therefore investigated platelet granule inhibition and potential to delay arterial thrombosis by Que and DiOHF. Both Que and DiOHF showed inhibition of collagen, adenosine diphosphate and arachidonic acid stimulated platelet aggregation, agonist-induced GPIIb/IIIa activation as demonstrated by PAC-1 and fibrinogen binding. While both flavonols inhibited agonist-induced granule exocytosis, greater inhibition of dense granule exocytosis occurred with DiOHF as measured by both ATP release and flow cytometry. In contrast, while Que inhibited agonist-induced P-selectin expression, as measured by both platelet surface P-selectin expression and upregulation of surface GPIIIa expression, inhibition by DiOHF was not significant for either parameter. C57BL/6 mice treated with 6 mg kg(-1) IV Que or DiOHF maintained greater blood flow following FeCl3-induced carotid artery injury when compared to the vehicle control. We provide evidence that Que and DiOHF improve blood flow following arterial injury in part by attenuating platelet granule exocytosis.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Exocitose/efeitos dos fármacos , Flavonóis/farmacologia , Quercetina/farmacologia , Trombose/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Artérias/patologia , Fibrinogênio/metabolismo , Humanos , Camundongos , Selectina-P/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligação Proteica/efeitos dos fármacos , Quinacrina/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Trombose/patologia
12.
Life Sci ; 320: 121542, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871935

RESUMO

AIMS: Endothelial dysfunction and arterial stiffness are hallmarks of hypertension, and major risk factors for cardiovascular disease. BPH/2J (Schlager) mice are a genetic model of spontaneous hypertension, but little is known about the vascular pathophysiology of these mice and the region-specific differences between vascular beds. Therefore, this study compared the vascular function and structure of large conductance (aorta and femoral) and resistance (mesenteric) arteries of BPH/2J mice with their normotensive BPN/2J counterparts. MAIN METHODS: Blood pressure was measured in BPH/2J and BPN/3J mice via pre-implanted radiotelemetry probes. At endpoint, vascular function and passive mechanical wall properties were assessed using wire and pressure myography, qPCR and histology. KEY FINDINGS: Mean arterial blood pressure was elevated in BPH/2J mice compared to BPN/3J controls. Endothelium-dependent relaxation to acetylcholine was attenuated in both the aorta and mesenteric arteries of BPH/2J mice, but through different mechanisms. In the aorta, hypertension reduced the contribution of prostanoids. Conversely, in the mesenteric arteries, hypertension reduced the contribution of both nitric oxide and endothelium-dependent hyperpolarization. Hypertension reduced volume compliance in both femoral and mesenteric arteries, but hypertrophic inward remodelling was only observed in the mesenteric arteries of BPH/2J mice. SIGNIFICANCE: This is the first comprehensive investigation of vascular function and structural remodelling in BPH/2J mice. Overall, hypertensive BPH/2J mice exhibited endothelial dysfunction and adverse vascular remodelling in the macro- and microvasculature, underpinned by distinct region-specific mechanisms. This highlights BPH/2J mice as a highly suitable model for evaluating novel therapeutics to treat hypertension-associated vascular dysfunction.


Assuntos
Hipertensão , Animais , Camundongos , Artérias/patologia , Pressão Sanguínea/fisiologia , Endotélio/patologia , Endotélio Vascular/patologia , Artérias Mesentéricas , Sistema Nervoso Simpático/fisiologia , Vasodilatação
13.
Br J Pharmacol ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658546

RESUMO

BACKGROUND AND PURPOSE: Pulmonary arterial hypertension (PAH), a rare fatal disorder characterised by inflammation, vascular remodelling and vasoconstriction. Current vasodilator therapies reduce pulmonary arterial pressure but not mortality. The G-protein coupled formyl peptide receptors (FPRs) mediates vasodilatation and resolution of inflammation, actions possibly beneficial in PAH. We investigated dilator and anti-inflammatory effects of the FPR biased agonist compound 17b in pulmonary vasculature using mouse precision-cut lung slices (PCLS). EXPERIMENTAL APPROACH: PCLS from 8-week-old male and female C57BL/6 mice, intrapulmonary arteries were pre-contracted with 5-HT for concentration-response curves to compound 17b and 43, and standard-of-care drugs, sildenafil, iloprost and riociguat. Compound 17b-mediated relaxation was assessed with FPR antagonists or inhibitors and in PCLS treated with TNF-α or LPS. Cytokine release from TNF-α- or LPS-treated PCLS ± compound 17b was measured. KEY RESULTS: Compound 17b elicited concentration-dependent vasodilation, with potencies of iloprost > compound 17b = riociguat > compound 43 = sildenafil. Compound 17b was inhibited by the FPR1 antagonist cyclosporin H but not by soluble guanylate cyclase, nitric oxide synthase or cyclooxygenase inhibitors. Under inflammatory conditions, the efficacy and potency of compound 17b were maintained, while iloprost and sildenafil were less effective. Additionally, compound 17b inhibited secretion of PAH-relevant cytokines via FPR2. CONCLUSIONS AND IMPLICATIONS: Vasodilation to compound 17b but not standard-of-care vasodilators, is maintained under inflammatory conditions, with additional inhibition of PAH-relevant cytokine release. This provides the first evidence that targeting FPR, with biased agonist, simultaneously targets vascular function and inflammation, supporting the development of FPR-based pharmacotherapy to treat PAH.

14.
Bioorg Med Chem ; 20(7): 2353-61, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22377671

RESUMO

Isoflavone consumption correlates with reduced rates of cardiovascular disease. Epidemiological studies and clinical data provide evidence that isoflavone metabolites, such as the isoflavan equol, contribute to these beneficial effects. In this study we developed a new route to isoflavans and isoflavenes via 2-morpholinoisoflavenes derived from a condensation reaction of phenylacetaldehydes, salicylaldehydes and morpholine. We report the synthesis of the isoflavans equol and deoxygenated analogues, and the isoflavenes 7,4'-dihydroxyisoflav-3-ene (phenoxodiol, haganin E) and 7,4'-dihydroxyisoflav-2-ene (isophenoxodiol). Vascular pharmacology studies reveal that all oxygenated isoflavans and isoflavenes can attenuate phenylephrine-induced vasoconstriction, which was unaffected by the estrogen receptor antagonist ICI 182,780. Furthermore, the compounds inhibited U46619 (a thromboxane A(2) analogue) induced vasoconstriction in endothelium-denuded rat aortae, and reduced the formation of GTP RhoA, with the effects being greatest for equol and phenoxodiol. Ligand displacement studies of rat uterine cytosol estrogen receptor revealed the compounds to be generally weak binders. These data are consistent with the vasorelaxation activity of equol and phenoxodiol deriving at least in part by inhibition of the RhoA/Rho-kinase pathway, and along with the limited estrogen receptor affinity supports a role for equol and phenoxodiol as useful agents for maintaining cardiovascular function with limited estrogenic effects.


Assuntos
Equol/análogos & derivados , Isoflavonas/química , Inibidores de Proteínas Quinases/síntese química , Receptores de Estrogênio/química , Vasodilatadores/síntese química , Quinases Associadas a rho/antagonistas & inibidores , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/toxicidade , Animais , Equol/síntese química , Equol/farmacologia , Isoflavonas/síntese química , Isoflavonas/farmacologia , Masculino , Morfolinas/química , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatadores/química , Vasodilatadores/farmacologia , Quinases Associadas a rho/metabolismo
15.
Curr Opin Pharmacol ; 65: 102263, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35802962

RESUMO

Lower extremity artery disease (LEAD) is a chronic inflammatory disease that occurs when atherosclerotic plaques form in the lower extremities, which may lead to amputation if not manged properly. Given clinical standardcare (pharmacological and surgical) have limited efficacy in LEAD, developing novel strategies to manage LEAD remains an unmet clinical need. Given that active resolution of inflammation is essential to facilitate tissue healing and repair, failure to resolve inflammation may lead to chronic inflammation, dysregulated cellular homeostasis and adverse tissue remodeling. Several studies have demonstrated the importance of the balance between endogenous pro-resolving mediators and pro-inflammatory factors. There is growing evidence to suggest endogenous pro-resolving mediators engage with pro-resolving G-protein-coupled receptors to reduce the initiation and progression of inflammatory responses and to increase therapeutic angiogenesis in LEAD. Here, we highlight the mechanisms and the consequences of resolved inflammation, and the therapeutic potential of endogenous pro-resolving mediators-based strategy for this devastating disease.


Assuntos
Mediadores da Inflamação , Inflamação , Artérias , Homeostase , Humanos , Inflamação/tratamento farmacológico , Extremidade Inferior
16.
Life Sci ; 289: 120220, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34902438

RESUMO

AIMS: Myocardial injury is a major contributor to left ventricular (LV) remodelling activating neurohormonal and inflammatory processes that create an environment of enhanced oxidative stress. This results in geometric and structural alterations leading to reduced LV systolic function. In this study we evaluated the efficacy of NP202, a synthetic flavonol, on cardiac remodelling in a chronic model of myocardial infarction (MI). MAIN METHODS: A rat model of chronic MI was induced by permanent surgical ligation of the coronary artery. NP202 treatment was commenced 2 days post-MI for 6 weeks at different doses (1, 10 and 20 mg/kg/day) to determine efficacy. Cardiac function was assessed by echocardiography prior to treatment and at week 6, and pressure-volume measurements were performed prior to tissue collection. Tissues were analysed for changes in fibrotic and inflammatory markers using immunohistochemistry and gene expression analysis. KEY FINDINGS: Rats treated with NP202 demonstrated improved LV systolic function and LV geometry compared to vehicle treated animals. Furthermore, measures of hypertrophy and interstitial fibrosis were attenuated in the non-infarct region of the myocardium with NP202 at the higher dose of 20 mg/kg (P < 0.05). At the tissue level, NP202 reduced monocyte chemoattractant protein-1 expression (P < 0.05) and tended to attenuate active caspase-3 expression to similar levels observed in sham animals (P = 0.075). SIGNIFICANCE: Improved LV function and structural changes observed with NP202 may be mediated through inhibition of inflammatory and apoptotic processes in the MI setting. NP202 could therefore prove a useful addition to standard therapy in patients with post-MI LV dysfunction.


Assuntos
Flavonoides/farmacologia , Infarto do Miocárdio , Miocárdio/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Caspase 3/biossíntese , Quimiocina CCL2/biossíntese , Doença Crônica , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Sprague-Dawley
17.
Br J Pharmacol ; 179(16): 4117-4135, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35365882

RESUMO

BACKGROUND AND PURPOSE: The risk of fatal cardiovascular events is increased in patients with type 2 diabetes mellitus (T2DM). A major contributor to poor prognosis is impaired nitric oxide (NO•) signalling at the level of tissue responsiveness, termed NO• resistance. This study aimed to determine if T2DM promotes NO• resistance in the heart and vasculature and whether tissue responsiveness to nitroxyl (HNO) is affected. EXPERIMENTAL APPROACH: At 8 weeks of age, male Sprague-Dawley rats commenced a high-fat diet. After 2 weeks, the rats received low-dose streptozotocin (two intraperitoneal injections, 35 mg·kg-1 , over two consecutive days) and continued on the same diet. Twelve weeks later, isolated hearts were Langendorff-perfused to assess responses to the NO• donor diethylamine NONOate (DEA/NO) and the HNO donor Angeli's salt. Isolated mesenteric arteries were utilised to measure vascular responsiveness to the NO• donors sodium nitroprusside (SNP) and DEA/NO, and the HNO donor Angeli's salt. KEY RESULTS: Inotropic, lusitropic and coronary vasodilator responses to DEA/NO were impaired in T2DM hearts, whereas responses to Angeli's salt were preserved or enhanced. Vasorelaxation to Angeli's salt was augmented in T2DM mesenteric arteries, which were hyporesponsive to the relaxant effects of SNP and DEA/NO. CONCLUSION AND IMPLICATIONS: This is the first evidence that inotropic and lusitropic responses are preserved, and NO• resistance in the coronary and mesenteric vasculature is circumvented, by the HNO donor Angeli's salt in T2DM. These findings highlight the cardiovascular therapeutic potential of HNO donors, especially in emergencies such as acute ischaemia or heart failure.


Assuntos
Diabetes Mellitus Tipo 2 , Óxido Nítrico , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Masculino , Doadores de Óxido Nítrico/farmacologia , Nitritos , Óxidos de Nitrogênio/farmacologia , Ratos , Ratos Sprague-Dawley
18.
J Pharmacol Exp Ther ; 336(2): 540-50, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21075839

RESUMO

The glucagon-like peptide 1 receptor (GLP-1R) is a promising target for the treatment of type II diabetes mellitus because of its role in metabolic homeostasis. In recent years, difficulties with peptide therapies have driven the search for small-molecule compounds to modulate the activity of this receptor. We recently identified quercetin, a naturally occurring flavonoid, as a probe-dependent, pathway-selective allosteric modulator of GLP-1R-mediated signaling. Using Chinese hamster ovary cells expressing the human GLP-1R, we have now extended this work to identify the structural requirements of flavonoids to modify GLP-1R binding and signaling (cAMP formation and intracellular Ca(2+) mobilization) of each of the GLP-1R endogenous agonists, as well as the clinically used exogenous peptide mimetic exendin-4. This study identified a chemical series of hydroxyl flavonols with the ability to selectively augment calcium (Ca(2+)) signaling in a peptide agonist-specific manner, with effects only on truncated GLP-1 peptides [GLP-1(7-36)NH(2) and GLP-1(7-37)] and exendin-4, but not on oxyntomodulin or full-length GLP-1 peptides [GLP-1(1-36)NH(2) and GLP-1(1-37)]. In addition, the 3-hydroxyl group on the flavone backbone (i.e., a flavonol) was essential for this activity, however insufficient on its own, to produce the allosteric effects. In contrast to hydroxyl flavonols, catechin had no effect on peptide-mediated Ca(2+) signaling but negatively modulated peptide-mediated cAMP formation in a probe-dependent manner. These data represent a detailed examination of the action of different flavonoids on peptide agonists at the GLP-1R and may aid in the development of future small molecule compounds targeted at this receptor.


Assuntos
Flavonoides/farmacologia , Receptores de Glucagon/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células 3T3 , Animais , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Catequina/farmacologia , Cricetinae , Cricetulus , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Camundongos , Receptores de Glucagon/fisiologia , Relação Estrutura-Atividade
19.
Bioorg Med Chem Lett ; 21(17): 5102-6, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21470863

RESUMO

3',4'-Dihydroxyflavonol (DiOHF) is a cardioprotective flavonol that reduces injury associated with myocardial ischaemia and reperfusion. We hypothesized that the efficacy of DiOHF could be enhanced through its targeting to hypoxic regions of partial reperfusion. Copper(I)-catalyzed ligation of an azide-modified DiOHF analogue to 2-propargyl-nitroimidazole afforded a DiOHF-nitroimidazole conjugate (DiOHF-NIm). When incubated with Con8 cells under normoxic conditions DiOHF-NIm could be detected in both the culture supernatant and cell lysate, whereas under hypoxic conditions it was present in substantially reduced amounts consistent with its selective metabolism under hypoxia. DiOHF-NIm possessed antioxidant activity comparable to DiOHF through scavenging of superoxide produced by NADPH/NADPH oxidase, but had significantly attenuated vasorelaxant activity. DiOHF-NIm treatment significantly reduced lactate dehydrogenase release following ischaemia/reperfusion in hindlimbs of anaesthetized rats (p <0.05), to a level similar to DiOHF treatment but also at earlier time points. DiOHF-NIm significantly reduced levels of myeloperoxidase (p <0.05), a biomarker of neutrophil accumulation, whereas the reduction afforded by DiOHF was not significant. DiOHF-NIm therefore represents a promising potential therapeutic for ischaemia/reperfusion injury.


Assuntos
Cardiotônicos/síntese química , Flavonóis/síntese química , Traumatismo por Reperfusão/prevenção & controle , Animais , Cardiotônicos/farmacologia , Cromatografia Líquida de Alta Pressão , Flavonóis/farmacologia , Ratos
20.
Mol Pharmacol ; 78(3): 456-65, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20547734

RESUMO

The glucagon-like peptide-1 (GLP-1) receptor is a key regulator of insulin secretion and a major therapeutic target for treatment of diabetes. However, GLP-1 receptor function is complex, with multiple endogenous peptides that can interact with the receptor, including full-length (1-37) and truncated (7-37) forms of GLP-1 that can each exist in an amidated form and the related peptide oxyntomodulin. We have investigated two GLP-1 receptor allosteric modulators, Novo Nordisk compound 2 (6,7-dichloro2-methylsulfonyl-3-tert-butylaminoquinoxaline) and quercetin, and their ability to modify binding and signaling (cAMP formation, intracellular Ca(2+) mobilization, and extracellular signal-regulated kinase 1/2 phosphorylation) of each of the naturally occurring endogenous peptide agonists, as well as the clinically used peptide mimetic exendin-4. We identified and quantified stimulus bias across multiple endogenous peptides, with response profiles for truncated GLP-1 peptides distinct from those of either the full-length GLP-1 peptides or oxyntomodulin, the first demonstration of such behavior at the GLP-1 receptor. Compound 2 selectively augmented cAMP signaling but did so in a peptide-agonist dependent manner having greatest effect on oxyntomodulin, weaker effect on truncated GLP-1 peptides, and negligible effect on other peptide responses; these effects were principally driven by parallel changes in peptide agonist affinity. In contrast, quercetin selectively modulated calcium signaling but with effects only on truncated GLP-1 peptides or exendin and not oxyntomodulin or full-length peptides. These data have significant implications for how GLP-1 receptor targeted drugs are screened and developed, whereas the allosterically driven, agonist-selective, stimulus bias highlights the potential for distinct clinical efficacy depending on the properties of individual drugs.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Animais , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Exenatida , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Insulina , Ligantes , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oxintomodulina , Receptores de Glucagon , Transdução de Sinais/fisiologia , Peçonhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA