Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neuroimage ; 279: 120329, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591477

RESUMO

Advancements in non-invasive brain analysis through novel approaches such as big data analytics and in silico simulation are essential for explaining brain function and associated pathologies. In this study, we extend the vector auto-regressive surrogate technique from a single multivariate time-series to group data using a novel Group Surrogate Data Generating Model (GSDGM). This methodology allowed us to generate biologically plausible human brain dynamics representative of a large human resting-state (rs-fMRI) dataset obtained from the Human Connectome Project. Simultaneously, we defined a novel similarity measure, termed the Multivariate Time-series Ensemble Similarity Score (MTESS). MTESS showed high accuracy and f-measure in subject identification, and it can directly compare the similarity between two multivariate time-series. We used MTESS to analyze both human and marmoset rs-fMRI data. Our results showed similarity differences between cortical and subcortical regions. We also conducted MTESS and state transition analysis between single and group surrogate techniques, and confirmed that a group surrogate approach can generate plausible group centroid multivariate time-series. Finally, we used GSDGM and MTESS for the fingerprint analysis of human rs-fMRI data, successfully distinguishing normal and outlier sessions. These new techniques will be useful for clinical applications and in silico simulation.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Animais , Encéfalo/diagnóstico por imagem , Callithrix , Simulação por Computador , Fatores de Tempo
2.
Sci Rep ; 14(1): 8316, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594386

RESUMO

Animal models of brain function are critical for the study of human diseases and development of effective interventions. Resting-state network (RSN) analysis is a powerful tool for evaluating brain function and performing comparisons across animal species. Several studies have reported RSNs in the common marmoset (Callithrix jacchus; marmoset), a non-human primate. However, it is necessary to identify RSNs and evaluate commonality and inter-individual variance through analyses using a larger amount of data. In this study, we present marmoset RSNs detected using > 100,000 time-course image volumes of resting-state functional magnetic resonance imaging data with careful preprocessing. In addition, we extracted brain regions involved in the composition of these RSNs to understand the differences between humans and marmosets. We detected 16 RSNs in major marmosets, three of which were novel networks that have not been previously reported in marmosets. Since these RSNs possess the potential for use in the functional evaluation of neurodegenerative diseases, the data in this study will significantly contribute to the understanding of the functional effects of neurodegenerative diseases.


Assuntos
Callithrix , Doenças Neurodegenerativas , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos
3.
Front Neuroimaging ; 2: 1345643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264540

RESUMO

In recent years the common marmoset homolog of the human default mode network (DMN) has been a hot topic of discussion in the marmoset research field. Previously, the posterior cingulate cortex regions (PGM, A19M) and posterior parietal cortex regions (LIP, MIP) were defined as the DMN, but some studies claim that these form the frontoparietal network (FPN). We restarted from a neuroanatomical point of view and identified two DMN candidates: Comp-A (which has been called both the DMN and FPN) and Comp-B. We performed GLM analysis on auditory task-fMRI and found Comp-B to be more appropriate as the DMN, and Comp-A as the FPN. Additionally, through fingerprint analysis, a DMN and FPN in the tasking human was closer to the resting common marmoset. The human DMN appears to have an advanced function that may be underdeveloped in the common marmoset brain.

4.
Neuron ; 111(14): 2258-2273.e10, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37196659

RESUMO

The prefrontal cortex (PFC) has dramatically expanded in primates, but its organization and interactions with other brain regions are only partially understood. We performed high-resolution connectomic mapping of the marmoset PFC and found two contrasting corticocortical and corticostriatal projection patterns: "patchy" projections that formed many columns of submillimeter scale in nearby and distant regions and "diffuse" projections that spread widely across the cortex and striatum. Parcellation-free analyses revealed representations of PFC gradients in these projections' local and global distribution patterns. We also demonstrated column-scale precision of reciprocal corticocortical connectivity, suggesting that PFC contains a mosaic of discrete columns. Diffuse projections showed considerable diversity in the laminar patterns of axonal spread. Altogether, these fine-grained analyses reveal important principles of local and long-distance PFC circuits in marmosets and provide insights into the functional organization of the primate brain.


Assuntos
Callithrix , Córtex Pré-Frontal , Animais , Encéfalo , Córtex Cerebral , Corpo Estriado , Vias Neurais , Mapeamento Encefálico
5.
Sci Data ; 10(1): 221, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105968

RESUMO

Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique that is useful for identifying normal developmental and aging processes and for data sharing. Marmosets have a relatively shorter life expectancy than other primates, including humans, because they grow and age faster. Therefore, the common marmoset model is effective in aging research. The current study investigated the aging process of the marmoset brain and provided an open MRI database of marmosets across a wide age range. The Brain/MINDS Marmoset Brain MRI Dataset contains brain MRI information from 216 marmosets ranging in age from 1 and 10 years. At the time of its release, it is the largest public dataset in the world. It also includes multi-contrast MRI images. In addition, 91 of 216 animals have corresponding high-resolution ex vivo MRI datasets. Our MRI database, available at the Brain/MINDS Data Portal, might help to understand the effects of various factors, such as age, sex, body size, and fixation, on the brain. It can also contribute to and accelerate brain science studies worldwide.


Assuntos
Encéfalo , Callithrix , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Fatores Etários
6.
Front Neurosci ; 15: 764796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899167

RESUMO

An important goal in neuroscience is to elucidate the causal relationships between the brain's different regions. This can help reveal the brain's functional circuitry and diagnose lesions. Currently there are a lack of approaches to functional connectome estimation that leverage the state-of-the-art in deep learning architectures and training methodologies. Therefore, we propose a new framework based on a vector auto-regressive deep neural network (VARDNN) architecture. Our approach consists of a set of nodes, each with a deep neural network structure. These nodes can be mapped to any spatial sub-division based on the data to be analyzed, such as anatomical brain regions from which representative neural signals can be obtained. VARDNN learns to reproduce experimental time series data using modern deep learning training techniques. Based on this, we developed two novel directed functional connectivity (dFC) measures, namely VARDNN-DI and VARDNN-GC. We evaluated our measures against a number of existing functional connectome estimation measures, such as partial correlation and multivariate Granger causality combined with large dimensionality counter-measure techniques. Our measures outperformed them across various types of ground truth data, especially as the number of nodes increased. We applied VARDNN to fMRI data to compare the dFC between 41 healthy control vs. 32 Alzheimer's disease subjects. Our VARDNN-DI measure detected lesioned regions consistent with previous studies and separated the two groups well in a subject-wise evaluation framework. Summarily, the VARDNN framework has powerful capabilities for whole brain dFC estimation. We have implemented VARDNN as an open-source toolbox that can be freely downloaded for researchers who wish to carry out functional connectome analysis on their own data.

7.
Sci Rep ; 10(1): 21285, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339834

RESUMO

Diffusion-weighted magnetic resonance imaging (dMRI) allows non-invasive investigation of whole-brain connectivity, which can reveal the brain's global network architecture and also abnormalities involved in neurological and mental disorders. However, the reliability of connection inferences from dMRI-based fiber tracking is still debated, due to low sensitivity, dominance of false positives, and inaccurate and incomplete reconstruction of long-range connections. Furthermore, parameters of tracking algorithms are typically tuned in a heuristic way, which leaves room for manipulation of an intended result. Here we propose a general data-driven framework to optimize and validate parameters of dMRI-based fiber tracking algorithms using neural tracer data as a reference. Japan's Brain/MINDS Project provides invaluable datasets containing both dMRI and neural tracer data from the same primates. A fundamental difference when comparing dMRI-based tractography and neural tracer data is that the former cannot specify the direction of connectivity; therefore, evaluating the fitting of dMRI-based tractography becomes challenging. The framework implements multi-objective optimization based on the non-dominated sorting genetic algorithm II. Its performance is examined in two experiments using data from ten subjects for optimization and six for testing generalization. The first uses a seed-based tracking algorithm, iFOD2, and objectives for sensitivity and specificity of region-level connectivity. The second uses a global tracking algorithm and a more refined set of objectives: distance-weighted coverage, true/false positive ratio, projection coincidence, and commissural passage. In both experiments, with optimized parameters compared to default parameters, fiber tracking performance was significantly improved in coverage and fiber length. Improvements were more prominent using global tracking with refined objectives, achieving an average fiber length from 10 to 17 mm, voxel-wise coverage of axonal tracts from 0.9 to 15%, and the correlation of target areas from 40 to 68%, while minimizing false positives and impossible cross-hemisphere connections. Optimized parameters showed good generalization capability for test brain samples in both experiments, demonstrating the flexible applicability of our framework to different tracking algorithms and objectives. These results indicate the importance of data-driven adjustment of fiber tracking algorithms and support the validity of dMRI-based tractography, if appropriate adjustments are employed.


Assuntos
Algoritmos , Conectoma , Bases de Dados Factuais , Imagem de Tensor de Difusão , Vias Neurais/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Animais , Humanos
8.
Brain Struct Funct ; 225(4): 1225-1243, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32367264

RESUMO

We describe our connectomics pipeline for processing anterograde tracer injection data for the brain of the common marmoset (Callithrix jacchus). Brain sections were imaged using a batch slide scanner (NanoZoomer 2.0-HT) and we used artificial intelligence to precisely segment the tracer signal from the background in the fluorescence images. The shape of each brain was reconstructed by reference to a block-face and all data were mapped into a common 3D brain space with atlas and 2D cortical flat map. To overcome the effect of using a single template atlas to specify cortical boundaries, brains were cyto- and myelo-architectonically annotated to create individual 3D atlases. Registration between the individual and common brain cortical boundaries in the flat map space was done to absorb the variation of each brain and precisely map all tracer injection data into one cortical brain space. We describe the methodology of our pipeline and analyze the accuracy of our tracer segmentation and brain registration approaches. Results show our pipeline can successfully process and normalize tracer injection experiments into a common space, making it suitable for large-scale connectomics studies with a focus on the cerebral cortex.


Assuntos
Inteligência Artificial , Encéfalo/citologia , Conectoma/métodos , Imageamento por Ressonância Magnética , Técnicas de Rastreamento Neuroanatômico/métodos , Neurônios/citologia , Animais , Atlas como Assunto , Callithrix , Vias Neurais/citologia
9.
Sci Data ; 5: 180009, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29437168

RESUMO

We present a new 3D digital brain atlas of the non-human primate, common marmoset monkey (Callithrix jacchus), with MRI and coregistered Nissl histology data. To the best of our knowledge this is the first comprehensive digital 3D brain atlas of the common marmoset having normalized multi-modal data, cortical and sub-cortical segmentation, and in a common file format (NIfTI). The atlas can be registered to new data, is useful for connectomics, functional studies, simulation and as a reference. The atlas was based on previously published work but we provide several critical improvements to make this release valuable for researchers. Nissl histology images were processed to remove illumination and shape artifacts and then normalized to the MRI data. Brain region segmentation is provided for both hemispheres. The data is in the NIfTI format making it easy to integrate into neuroscience pipelines, whereas the previous atlas was in an inaccessible file format. We also provide cortical, mid-cortical and white matter boundary segmentations useful for visualization and analysis.


Assuntos
Encéfalo , Callithrix , Animais , Atlas como Assunto , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Conectoma , Imageamento por Ressonância Magnética
11.
Neural Netw ; 62: 39-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25257715

RESUMO

The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains.


Assuntos
Inteligência Artificial , Encéfalo/fisiologia , Aprendizagem/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Algoritmos , Encéfalo/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA