Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Am Chem Soc ; 146(15): 10407-10417, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572973

RESUMO

Nitroaromatic compounds are major constituents of the brown carbon aerosol particles in the troposphere that absorb near-ultraviolet (UV) and visible solar radiation and have a profound effect on the Earth's climate. The primary sources of brown carbon include biomass burning, forest fires, and residential burning of biofuels, and an important secondary source is photochemistry in aqueous cloud and fog droplets. Nitrobenzene is the smallest nitroaromatic molecule and a model for the photochemical behavior of larger nitroaromatic compounds. Despite the obvious importance of its droplet photochemistry to the atmospheric environment, there have not been any detailed studies of the ultrafast photochemical dynamics of nitrobenzene in aqueous solution. Here, we combine femtosecond transient absorption spectroscopy, time-resolved infrared spectroscopy, and quantum chemistry calculations to investigate the primary steps following the near-UV (λ ≥ 340 nm) photoexcitation of aqueous nitrobenzene. To understand the role of the surrounding water molecules in the photochemical dynamics of nitrobenzene, we compare the results of these investigations with analogous measurements in solutions of methanol, acetonitrile, and cyclohexane. We find that vibrational energy transfer to the aqueous environment quenches internal excitation, and therefore, unlike the gas phase, we do not observe any evidence for formation of photoproducts on timescales up to 500 ns. We also find that hydrogen bonding between nitrobenzene and surrounding water molecules slows the S1/S0 internal conversion process.

2.
Phys Chem Chem Phys ; 26(4): 3451-3461, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38205824

RESUMO

The phenol molecule is a prototype for non-adiabatic dynamics and the excited-state photochemistry of biomolecules. In this article, we report a joint theoretical and experimental investigation on the resonance enhanced multiphoton ionisation photoelectron (REMPI) spectra of the two lowest ionisation bands of phenol. The focus is on the theoretical interpretation of the measured spectra using quantum dynamics simulations. These were performed by numerically solving the time-dependent Schrödinger equation using the multi-layer variant of the multiconfiguration time-dependent Hartree algorithm together with a vibronic coupling Hamiltonian model. The ionising laser pulse is modelled explicitly within the ionisation continuum model to simulate experimental femtosecond 1+1 REMPI photoelectron spectra. These measured spectra are sensitive to very short lived electronically excited states, providing a rigorous benchmark for our theoretical methods. The match between experiment and theory allows for an interpretation of the features of the spectra at different wavelengths and shows that there are features due to both 'direct' and 'indirect' ionisation, resulting from non-resonant and resonant excitation by the pump pulse.

3.
J Phys Chem A ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917388

RESUMO

We report a protocol for the implementation of "reaction path following" from a transition state through a conical intersection, including both the path curvature induced by the derivative coupling and the corresponding induced electronic coherences. This protocol focuses on the "central" Gaussian wavepacket (initially unexcited) in the quantum Ehrenfest (QuEh) method. Like the reaction path following, the normal mode corresponding to the imaginary frequency at the transition state is given an initial momentum. The protocol is applied to the "channel 3" radiationless decay of benzene. We also demonstrate that one can enhance the effect of the derivative coupling and the electronic coherence with an IR pulse.

4.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353309

RESUMO

Photoexcitation of green fluorescent protein (GFP) triggers long-range proton transfer along a "wire" of neighboring protein residues, which, in turn, activates its characteristic green fluorescence. The GFP proton wire is one of the simplest, most well-characterized models of biological proton transfer but remains challenging to simulate due to the sensitivity of its energetics to the surrounding protein conformation and the possibility of non-classical behavior associated with the movement of lightweight protons. Using a direct dynamics variational multiconfigurational Gaussian wavepacket method to provide a fully quantum description of both electrons and nuclei, we explore the mechanism of excited state proton transfer in a high-dimensional model of the GFP chromophore cluster over the first two picoseconds following excitation. During our simulation, we observe the sequential starts of two of the three proton transfers along the wire, confirming the predictions of previous studies that the overall process starts from the end of the wire furthest from the fluorescent chromophore and proceeds in a concerted but asynchronous manner. Furthermore, by comparing the full quantum dynamics to a set of classical trajectories, we provide unambiguous evidence that tunneling plays a critical role in facilitating the leading proton transfer.


Assuntos
Prótons , Proteínas de Fluorescência Verde/química , Fluorescência , Conformação Proteica , Simulação por Computador
5.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38747999

RESUMO

Quantum dynamics simulations are becoming a standard tool for simulating photo-excited molecular systems involving a manifold of coupled states, known as non-adiabatic dynamics. While these simulations have had many successes in explaining experiments and giving details of non-adiabatic transitions, the question remains as to their predictive power. In this work, we present a set of quantum dynamics simulations on cyclobutanone using both grid-based multi-configuration time-dependent Hartree and direct dynamics variational multi-configuration Gaussian methods. The former used a parameterized vibronic coupling model Hamiltonian, and the latter generated the potential energy surfaces on the fly. The results give a picture of the non-adiabatic behavior of this molecule and were used to calculate the signal from a gas-phase ultrafast electron diffraction (GUED) experiment. Corresponding experimental results will be obtained and presented at a later stage for comparison to test the predictive power of the methods. The results show that over the first 500 fs after photo-excitation to the S2 state, cyclobutanone relaxes quickly to the S1 state, but only a small population relaxes further to the S0 state. No significant transfer of population to the triplet manifold is found. It is predicted that the GUED experiments over this time scale will see signals related mostly to the C-O stretch motion and elongation of the molecular ring along the C-C-O axis.

6.
Phys Rev Lett ; 129(17): 173203, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332247

RESUMO

The creation and dynamical fate of a coherent superposition of electronic states generated in a polyatomic molecule by broadband ionization with extreme ultraviolet pulses is studied using the multiconfiguration time-dependent Hartree method together with an ionization continuum model Hamiltonian. The electronic coherence between the hole states usually lasts until the nuclear dynamics leads to decoherence. A key goal of attosecond science is to control the electronic motion and design laser control schemes to retain this coherence for longer timescales. Here, we investigate this possibility using time-delayed pulses and show how this opens up the prospect of coherent control of charge migration phenomenon.

7.
J Chem Phys ; 157(20): 204301, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36456224

RESUMO

Nitroaromatic compounds can photorelease nitric oxide after UV absorption. The efficiency of the photoreaction depends on the molecular structure, and two features have been pointed out as particularly important for the yield of the process: the presence of methyl groups at the ortho position with respect to the nitro group and the degree of conjugation of the molecule. In this paper, we provide a theoretical characterization at the CASPT2//CASSCF (complete active space second-order perturbation theory//complete active space self-consistent field) level of theory of the photorelease of NO for four molecules derived from nitrobenzene through the addition of ortho methyl groups and/or the elongation of the conjugation. Our previously described mechanism obtained for the photorelease of NO in nitrobenzene has been adopted as a model for the process. According to this model, the process proceeds through a reactive singlet-triplet crossing (STC) region that the system can reach from the triplet 3(πOπ*) minimum. The energy barrier that must be surmounted in order to populate the reactive STC can be associated with the efficiency of the photoreaction. Here, the obtained results display clear differences in the efficiency of the photoreaction in the studied systems and can be correlated with experimental results. Thus, the model proves its ability to highlight the differences in the photoreaction efficiency for the nitroaromatic compounds studied here.

8.
J Chem Phys ; 156(24): 244114, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778090

RESUMO

In this work, we have studied the nuclear and electron dynamics in the glycine cation starting from localized hole states using the quantum Ehrenfest method. The nuclear dynamics is controlled both by the initial gradient and by the instantaneous gradient that results from the oscillatory electron dynamics (charge migration). We have used the Fourier transform (FT) of the spin densities to identify the "normal modes" of the electron dynamics. We observe an isomorphic relationship between the electron dynamics normal modes and the nuclear dynamics, seen in the vibrational normal modes. The FT spectra obtained this way show bands that are characteristic of the energy differences between the adiabatic hole states. These bands contain individual peaks that are in one-to-one correspondence with atom pair (+·) ↔ (·+) resonances, which, in turn, stimulate nuclear motion involving the atom pair. With such understanding, we anticipate "designer" coherent superpositions that can drive nuclear motion in a particular direction.


Assuntos
Elétrons , Glicina , Cátions , Eletrônica , Movimento (Física)
9.
Phys Chem Chem Phys ; 23(41): 23684-23695, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34642723

RESUMO

Gaussian wavepacket methods are becoming popular for the investigation of nonadiabatic molecular dynamics. In the present work, a recently developed efficient algorithm for the Direct Dynamics variational Multi-Configurational Gaussian (DD-vMCG) method has been used to describe the multidimensional photodissociation dynamics of phenol including all degrees of freedom. Full-dimensional quantum dynamic calculations including for the first time six electronic states (1ππ, 11ππ*, 11πσ*, 21πσ*, 21ππ*, 31ππ*), along with a comparison to an existing analytical 4-state model for the potential energy surfaces are presented. Including the fifth singlet excited state is shown to have a significant effect on the nonadiabatic photodissociation of phenol to the phenoxyl radical and hydrogen atom. State population and flux analysis from the DD-vMCG simulations of phenol provided further insights into the decay mechanism, confirming the idea of rapid relaxation to the ground state through the 1ππ/11πσ* conical intersection.

10.
J Chem Phys ; 154(14): 144106, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33858146

RESUMO

We report on first applications of the Multi-Layer Gaussian-based Multi-Configuration Time-Dependent Hartree (ML-GMCTDH) method [Römer et al., J. Chem. Phys. 138, 064106 (2013)] beyond its basic two-layer variant. The ML-GMCTDH scheme provides an embedding of a variationally evolving Gaussian wavepacket basis into a hierarchical tensor representation of the wavefunction. A first-principles parameterized model Hamiltonian for ultrafast non-adiabatic dynamics in an oligothiophene-fullerene charge transfer complex is employed, relying on a two-state linear vibronic coupling model that combines a distribution of tuning type modes with an intermolecular coordinate that also modulates the electronic coupling. Efficient ML-GMCTDH simulations are carried out for up to 300 vibrational modes using an implementation within the QUANTICS program. Excellent agreement with reference ML-MCTDH calculations is obtained.

11.
J Chem Phys ; 154(12): 124127, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810697

RESUMO

The Direct Dynamics variational Multi-Configurational Gaussian (DD-vMCG) method provides a fully quantum mechanical solution to the time-dependent Schrödinger equation for the time evolution of nuclei with potential surfaces calculated on-the-fly using a quantum chemistry program. Initial studies have shown its potential for flexible and accurate simulations of non-adiabatic excited-state molecular dynamics. In this paper, we present developments to the DD-vMCG algorithm that improve both its accuracy and efficiency. First, a new, efficient parallel algorithm to control the DD-vMCG database of quantum chemistry points is presented along with improvements to the Shepard interpolation scheme. Second, the use of symmetry in describing the potential surfaces is introduced along with a new phase convention in the propagation diabatization. Benchmark calculations on the allene radical cation including all degrees of freedom then show that the new scheme is able to produce a consistent non-adiabatic coupling vector field. This new DD-vMCG version thus opens the route for effectively and accurately treating complex chemical systems using quantum dynamics simulations.

12.
Molecules ; 26(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885829

RESUMO

In this work, we report a complete analysis by theoretical and spectroscopic methods of the short-time behaviour of 4-(dimethylamino)benzonitrile (DMABN) in the gas phase as well as in cyclohexane, tetrahydrofuran, acetonitrile, and water solution, after excitation to the La state. The spectroscopic properties of DMABN were investigated experimentally using UV absorption and fluorescence emission spectroscopy. The computational study was developed at different electronic structure levels and using the Polarisable Continuum Model (PCM) and explicit solvent molecules to reproduce the solvent environment. Additionally, excited state quantum dynamics simulations in the diabatic picture using the direct dynamics variational multiconfigurational Gaussian (DD-vMCG) method were performed, the largest quantum dynamics "on-the-fly" simulations performed with this method until now. The comparison with fully converged multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) dynamics on parametrised linear vibronic coupling (LVC) potentials show very similar population decays and evolution of the nuclear wavepacket. The ring C=C stretching and three methyl tilting modes are identified as the responsible motions for the internal conversion from the La to the Lb states. No major differences are observed in the ultrafast initial decay in different solvents, but we show that this effect depends strongly on the level of electronic structure used.

13.
Phys Chem Chem Phys ; 22(28): 15945-15952, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572418

RESUMO

At low excitation energies nitrobenzene photoreleases NO with low translational and rotational energy, while at higher excitation energies NO is photoreleased with both low and high translational and rotational energy. The fast products are formed through a singlet-triplet crossing (STC) region featuring an oxaziridine ring, while a ground state roaming mechanism was suggested to produce the slow molecules. Computing translational and rotational energies performing CASSCF classical dynamics, we here prove how the same oxaziridine STC can account for both fast and slow photoproducts, depending on the region of the seam through which the ground state is populated. A roaming-type STC/CI has also been characterized, from which slow NO molecules can also be formed through a roaming photodegradation mechanism, here in the excited state. The higher accessibility of the oxaziridine STC mechanism, 1.53 eV lower in energy than the roaming path, questions the contribution of roaming in nitrobenzene NO photoproduction.

14.
Phys Chem Chem Phys ; 22(43): 25272-25283, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33135692

RESUMO

The first two excitation bands below 7 eV in the electronic absorption spectrum of maleimide are investigated using a model Hamiltonian including four low-lying singlet excited states within the manifold of 24 vibrational modes. The role of non-adiabatic effects is studied and shines light on both the broad, inter-state coupling-dominated spectral band as well as the fine-structured, not-so-strong coupled band. Calculations have been performed using the Multiconfigurational Time-Dependent Hartree (MCTDH) wavepacket propagation method as well as its multilayer version (ML-MCTDH) using a quadratic vibronic coupling (QVC) Hamiltonian model where parameters are obtained from fitting adiabatic potential energy surfaces computed by ab initio methods. The quantum dynamics calculations provide information on the relaxation dynamics and the vibrational modes involved. Already with a low-order vibronic coupling model and only a few modes being considered, a quantitative agreement with the experimental spectrum is obtained. However, it is found that all modes need to be considered to get a full picture of the photo-excited relaxation dynamics of this molecule.

15.
Phys Chem Chem Phys ; 22(34): 19022-19032, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32808948

RESUMO

Firefly bioluminescence is exploited widely in imaging in the biochemical and biomedical sciences; however, our fundamental understanding of the electronic structure and relaxation processes of the oxyluciferin that emits the light is still rudimentary. Here, we employ photoelectron spectroscopy and quantum chemistry calculations to investigate the electronic structure and relaxation of a series of model oxyluciferin anions. We find that changing the deprotonation site has a dramatic influence on the relaxation pathway following photoexcitation of higher lying electronically excited states. The keto form of the oxyluciferin anion is found to undergo internal conversion to the fluorescent S1 state, whereas we find evidence to suggest that the enol and enolate forms undergo internal conversion to a dipole bound state, possibly via the fluorescent S1 state. Partially resolved vibrational structure points towards the involvement of out-of-plane torsional motions in internal conversion to the dipole bound state, emphasising the combined electronic and structural role that the microenvironment plays in controlling the electronic relaxation pathway in the enzyme.


Assuntos
Ânions/química , Fenômenos Eletromagnéticos , Indóis/química , Pirazinas/química , Animais , Vaga-Lumes/química , Modelos Químicos , Espectroscopia Fotoeletrônica
16.
J Chem Phys ; 153(3): 031102, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716173

RESUMO

We describe the implementation of a laser control pulse in the quantum-Ehrenfest method, a molecular quantum dynamics method that solves the time-dependent Schrödinger equation for both electrons and nuclei. The oscillating electric field-dipole interaction is incorporated directly in the one-electron Hamiltonian of the electronic structure part of the algorithm. We then use the coupled electron-nuclear dynamics of the π-system in the allene radical cation (•CH2=C=CH2)+ as a simple model of a pump-control experiment. We start (pump) with a two-state superposition of two cationic states. The resulting electron dynamics corresponds to the rapid oscillation of the unpaired electron between the two terminal methylenes. This electron dynamics is, in turn, coupled to the torsional motion of the terminal methylenes. There is a conical intersection at 90° twist, where the electron dynamics collapses because the adiabatic states become degenerate. After passing the conical intersection, the electron dynamics revives. The IR pulse (control) in our simulations is timed to have its maximum at the conical intersection. Our simulations show that the effect of the (control) pulse is to change the electron dynamics at the conical intersection and, as a consequence, the concomitant nuclear dynamics, which is dominated by the change in the torsional angle.

17.
J Chem Phys ; 152(8): 084101, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32113340

RESUMO

The multiconfiguration time-dependent Hartree (MCTDH) method is a powerful method for solving the time-dependent Schrödinger equation in quantum molecular dynamics. It is, however, hampered by the so-called curse of dimensionality which results in exponential scaling with respect to the number of degrees of freedom in the system and, thus, limits its applicability to small- and medium-sized molecules. To avoid this scaling, we derive equations of motion for a series of truncated MCTDH methods using a many-mode second-quantization formulation where the configuration space is restricted based on mode-combination levels as also done in the vibrational configuration interaction and vibrational coupled cluster methods for solving the time-independent Schrödinger equation. The full MCTDH wave function is invariant with respect to the choice of constraint (or gauge) operators, but restricting the configuration space removes this invariance. We, thus, analyze the remaining redundancies and derive equations for variationally optimizing the non-redundant matrix elements of the constraint operators. As an alternative, we also present a constraint that keeps the density matrices block diagonal during the propagation and the two choices are compared. Example calculations are performed on formyl fluoride and a series of high-dimensional Henon-Heiles potentials. The results show that the MCTDH[n] methods can be applied to large systems and that an optimal choice of constraint operators is key to obtaining the correct physical behavior of the wave function.

18.
Phys Chem Chem Phys ; 21(20): 10514-10522, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31070625

RESUMO

The photophysics of nitroaromatic compounds is characterized by an ultrafast decay into the triplet manifold and by significant triplet quantum yields. The latter quantity changes drastically depending on the system, as shown for 2-nitronaphthalene, 1-nitronaphthalene, and 2-methyl-1-nitronaphthalene, whose triplet quantum yields have been previously measured to be 0.93 ± 0.15, 0.64 ± 0.12, and 0.33 ± 0.05, respectively (J. Phys. Chem. A, 2013, 117, 14100). In this study, we rationalize the reported trend of the triplet quantum yield on the basis of the different abilities of the excited S1 state to reach a previously unreported conical intersection with the ground state. This path is in competition with the path leading to the triplet state, which appears to be equally favorable in the three systems. The energy barriers from the S1 CASPT2//CASSCF minima to a CASPT2 minimum-energy-crossing-point of the S1/S0 conical intersection have been computed to follow the same trend as the triplet quantum yields of the nitroaromatic systems under analysis. The path has also been characterized for nitrobenzene; an energy barrier was obtained that nicely fits the derived model and is in agreement with its triplet quantum yield value (>0.8). The ability of the present model to not only rationalize the experimental data of a single molecule but also to reproduce a trend for four slightly different systems demonstrates its reliability.

19.
Phys Chem Chem Phys ; 21(26): 14429-14439, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30899926

RESUMO

In a seminal work the photodissociation of IBr has been controlled using a strong non-resonant IR pulse [Sussman et al., Science, 2006, 314, 274], changing the branching ratio of products in different final states via the relative timing of pump and control pulses. In this paper, we revisit the control of this molecule. Potential surfaces for the complete spin-orbit manifold of IBr states dissociating into the ground and first excited states of the constituent atoms have been calculated at the multi-reference configuration interaction (MRCI) level of theory as a function of applied field. Both the strength and direction of field have been taken into account and it is seen how the avoided crossing between the states thought to be key in the control mechanism shift as a function of field strength. These surfaces will enable full calculations of the molecule in the pump-control field. Preliminary dynamics calculations with the field placed along the molecular axis show that a Hamiltonian including all 36-states agrees with earlier results and is able to model the basic features of the control. However, just like earlier results, this restricted model is not able to reproduce the timescale of the control.

20.
J Chem Phys ; 151(16): 164304, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675891

RESUMO

Following on from previous experimental and theoretical work [Neville et al., Nat. Commun. 7, 11357 (2016)], we report the results of a combined electronic structure theory and quantum dynamics study of the excited state dynamics of the pyrrole dimer following excitation to its first two excited states. Employing an exciton-based analysis of the Ã(π3s/σ*) and B̃(π3s/3p/σ*) states, we identify an excited-state electron transfer pathway involving the coupling of the Ã(π3s/σ*) and B̃(π3s/3p/σ*) states and driven by N-H dissociation in the B̃(π3s/3p/σ*) state. This electron transfer mechanism is found to be mediated by vibronic coupling of the B̃ state, which has a mixed π3s/3p Rydberg character at the Franck-Condon point, to a high-lying charge transfer state of the πσ* character by the N-H stretch coordinate. Motivated by these results, quantum dynamics simulations of the excited-state dynamics of the pyrrole dimer are performed using the multiconfigurational time-dependent Hartree method and a newly developed model Hamiltonian. It is predicted that the newly identified electron transfer pathway will be open following excitation to both the Ã(π3s/σ*) and B̃(π3s/3p/σ*) states and may be the dominant relaxation pathway in the latter case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA