Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Neurosci ; 25(1): 31, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965498

RESUMO

BACKGROUND: Most vocal learning species exhibit an early critical period during which their vocal control neural circuitry facilitates the acquisition of new vocalizations. Some taxa, most notably humans and parrots, retain some degree of neurobehavioral plasticity throughout adulthood, but both the extent of this plasticity and the neurogenetic mechanisms underlying it remain unclear. Differential expression of the transcription factor FoxP2 in both songbird and parrot vocal control nuclei has been identified previously as a key pattern facilitating vocal learning. We hypothesize that the resilience of vocal learning to cognitive decline in open-ended learners will be reflected in an absence of age-related changes in neural FoxP2 expression. We tested this hypothesis in the budgerigar (Melopsittacus undulatus), a small gregarious parrot in which adults converge on shared call types in response to shifts in group membership. We formed novel flocks of 4 previously unfamiliar males belonging to the same age class, either "young adult" (6 mo - 1 year) or "older adult" (≥ 3 year), and then collected audio-recordings over a 20-day learning period to assess vocal learning ability. Following behavioral recording, immunohistochemistry was performed on collected neural tissue to measure FoxP2 protein expression in a parrot vocal learning center, the magnocellular nucleus of the medial striatum (MMSt), and its adjacent striatum. RESULTS: Although older adults show lower vocal diversity (i.e. repertoire size) and higher absolute levels of FoxP2 in the MMSt than young adults, we find similarly persistent downregulation of FoxP2 and equivalent vocal plasticity and vocal convergence in the two age cohorts. No relationship between individual variation in vocal learning measures and FoxP2 expression was detected. CONCLUSIONS: We find neural evidence to support persistent vocal learning in the budgerigar, suggesting resilience to aging in the open-ended learning program of this species. The lack of a significant relationship between FoxP2 expression and individual variability in vocal learning performance suggests that other neurogenetic mechanisms could also regulate this complex behavior.


Assuntos
Envelhecimento , Fatores de Transcrição Forkhead , Aprendizagem , Vocalização Animal , Animais , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Vocalização Animal/fisiologia , Masculino , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Aprendizagem/fisiologia , Melopsittacus/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia
2.
Syst Biol ; 72(1): 228-241, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35916751

RESUMO

Gene tree discordance is expected in phylogenomic trees and biological processes are often invoked to explain it. However, heterogeneous levels of phylogenetic signal among individuals within data sets may cause artifactual sources of topological discordance. We examined how the information content in tips and subclades impacts topological discordance in the parrots (Order: Psittaciformes), a diverse and highly threatened clade of nearly 400 species. Using ultraconserved elements from 96% of the clade's species-level diversity, we estimated concatenated and species trees for 382 ingroup taxa. We found that discordance among tree topologies was most common at nodes dating between the late Miocene and Pliocene, and often at the taxonomic level of the genus. Accordingly, we used two metrics to characterize information content in tips and assess the degree to which conflict between trees was being driven by lower-quality samples. Most instances of topological conflict and nonmonophyletic genera in the species tree could be objectively identified using these metrics. For subclades still discordant after tip-based filtering, we used a machine learning approach to determine whether phylogenetic signal or noise was the more important predictor of metrics supporting the alternative topologies. We found that when signal favored one of the topologies, the noise was the most important variable in poorly performing models that favored the alternative topology. In sum, we show that artifactual sources of gene tree discordance, which are likely a common phenomenon in many data sets, can be distinguished from biological sources by quantifying the information content in each tip and modeling which factors support each topology. [Historical DNA; machine learning; museomics; Psittaciformes; species tree.].


Assuntos
Papagaios , Humanos , Animais , Filogenia , Papagaios/genética
3.
PLoS Comput Biol ; 19(7): e1011231, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498847

RESUMO

Animals can actively encode different types of identity information in learned communication signals, such as group membership or individual identity. The social environments in which animals interact may favor different types of information, but whether identity information conveyed in learned signals is robust or responsive to social disruption over short evolutionary timescales is not well understood. We inferred the type of identity information that was most salient in vocal signals by combining computational tools, including supervised machine learning, with a conceptual framework of "hierarchical mapping", or patterns of relative acoustic convergence across social scales. We used populations of a vocal learning species as a natural experiment to test whether the type of identity information emphasized in learned vocalizations changed in populations that experienced the social disruption of introduction into new parts of the world. We compared the social scales with the most salient identity information among native and introduced range monk parakeet (Myiopsitta monachus) calls recorded in Uruguay and the United States, respectively. We also evaluated whether the identity information emphasized in introduced range calls changed over time. To place our findings in an evolutionary context, we compared our results with another parrot species that exhibits well-established and distinctive regional vocal dialects that are consistent with signaling group identity. We found that both native and introduced range monk parakeet calls displayed the strongest convergence at the individual scale and minimal convergence within sites. We did not identify changes in the strength of acoustic convergence within sites over time in the introduced range calls. These results indicate that the individual identity information in learned vocalizations did not change over short evolutionary timescales in populations that experienced the social disruption of introduction. Our findings point to exciting new research directions about the robustness or responsiveness of communication systems over different evolutionary timescales.


Assuntos
Papagaios , Animais , Evolução Biológica , Idioma , Acústica , Vocalização Animal
4.
Proc Biol Sci ; 290(2000): 20230365, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37312548

RESUMO

In some species, the ability to acquire new vocalizations persists into adulthood and may be an important mediator of social interactions. While it is generally assumed that vocal learning persists undiminished throughout the lifespan of these open-ended learners, the stability of this trait remains largely unexplored. We hypothesize that vocal learning exhibits senescence, as is typical of complex cognitive traits, and that this decline relates to age-dependent changes in social behaviour. The budgerigar (Melopsittacus undulatus), an open-ended learner that develops new contact call types that are shared with social associates upon joining new flocks, provides a robust assay for measuring the effects of ageing on vocal learning ability. We formed captive flocks of 4 previously unfamiliar adult males of the same age class, either 'young adults' (6 mo-1 y) or 'older adults' (≥ 3 y), and concurrently tracked changes in contact call structure and social interactions over time. Older adults exhibited decreased vocal diversity, which may be related to sparser and weaker affiliative bonds observed in older adults. Older adults, however, displayed equivalent levels of vocal plasticity and vocal convergence compared to young adults, suggesting that many components of vocal learning are largely maintained into later adulthood in an open-ended learner.


Assuntos
Melopsittacus , Animais , Masculino , Envelhecimento , Inteligência , Longevidade , Interação Social
5.
Proc Biol Sci ; 289(1971): 20212397, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35317667

RESUMO

Previous studies have demonstrated a correlation between longevity and brain size in a variety of taxa. Little research has been devoted to understanding this link in parrots; yet parrots are well-known for both their exceptionally long lives and cognitive complexity. We employed a large-scale comparative analysis that investigated the influence of brain size and life-history variables on longevity in parrots. Specifically, we addressed two hypotheses for evolutionary drivers of longevity: the cognitivebuffer hypothesis, which proposes that increased cognitive abilities enable longer lifespans, and the expensive brain hypothesis, which holds that increases in lifespan are caused by prolonged developmental time of, and increased parental investment in, large-brained offspring. We estimated life expectancy from detailed zoo records for 133 818 individuals across 244 parrot species. Using a principled Bayesian approach that addresses data uncertainty and imputation of missing values, we found a consistent correlation between relative brain size and life expectancy in parrots. This correlation was best explained by a direct effect of relative brain size. Notably, we found no effects of developmental time, clutch size or age at first reproduction. Our results suggest that selection for enhanced cognitive abilities in parrots has in turn promoted longer lifespans.


Assuntos
Papagaios , Animais , Teorema de Bayes , Evolução Biológica , Humanos , Expectativa de Vida , Tamanho do Órgão
6.
Proc Biol Sci ; 286(1903): 20190666, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31138067

RESUMO

Vocal learning, in which animals modify their vocalizations based on social experience, has evolved in several lineages of mammals and birds, including humans. Despite much attention, the question of how this key cognitive trait has evolved remains unanswered. The motor theory for the origin of vocal learning posits that neural centres specialized for vocal learning arose from adjacent areas in the brain devoted to general motor learning. One prediction of this hypothesis is that visual displays that rely on complex motor patterns may also be learned in taxa with vocal learning. While learning of both spoken and gestural languages is well documented in humans, the occurrence of learned visual displays has rarely been examined in non-human animals. We tested for geographical variation consistent with learning of visual displays in long-billed hermits ( Phaethornis longirostris), a lek-mating hummingbird that, like humans, has both learned vocalizations and elaborate visual displays. We found lek-level signatures in both vocal parameters and visual display features, including display element proportions, sequence syntax and fine-scale parameters of elements. This variation was not associated with genetic differentiation between leks. In the absence of genetic differences, geographical variation in vocal signals at small scales is most parsimoniously attributed to learning, suggesting a significant role of social learning in visual display ontogeny. The co-occurrence of learning in vocal and visual displays would be consistent with a parallel evolution of these two signal modalities in this species.


Assuntos
Comunicação Animal , Aves/fisiologia , Aprendizagem , Comportamento Social , Aprendizagem Espacial , Vocalização Animal , Animais , Feminino , Masculino
7.
J Anim Ecol ; 88(4): 498-501, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30957877

RESUMO

In Focus: Heinsohn, R., Olah, G., Webb, M., Peakall, R., & Stojanovic, D. (2019). Sex ratio bias and shared paternity reduce individual fitness and population viability in a critically endangered parrot. Journal of Animal Ecology, 88, 502-510. While the effects of variation in the sex ratio of offspring have been thoroughly explored over the last century, the sex ratio of adults has received far less attention. A paper by Heinsohn and colleagues in this issue shows that changes in the adult sex ratio can have striking effects on mating systems, reproductive success and population viability. These impacts are all the more dramatic because they occur in a critically endangered species, the swift parrot, Lathamus discolor, of Tasmania. This species suffers heavy predation from the introduced sugar glider, Petaurus breviceps, which kills nesting females and their clutches, resulting in strongly male-biased adult sex ratios. The authors combined demographic and genetic data to show that, at sites with heavier predation, the remaining females were more likely to mate with multiple males. This shift in the mating system also led to lower overall nesting success, with fewer chicks fledged per nest at sites with higher levels of mixed paternity. Population viability models based on these data predicted steep population declines, with models using the highest observed rates of mixed paternity showing the sharpest declines. These results demonstrate that changes in the adult sex ratio can have far-reaching impacts, including on the fitness of populations themselves.


Assuntos
Reprodução , Razão de Masculinidade , Animais , Espécies em Perigo de Extinção , Feminino , Masculino , Comportamento Predatório , Comportamento Sexual Animal , Tasmânia
9.
Emu ; 118(1): 50-66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962561

RESUMO

Vocal dialects have fascinated biologists for over 50 years. This mosaic pattern of geographic variation in learned vocalizations was first described in a songbird, and since that time, most studies investigating dialects have focused on songbird species. Here we examine patterns of geographic variation in the calls of a different group of vocal learning birds, the parrots (Order Psittaciformes). We summarize the growing literature on vocal variation in parrots, and complement this review with a survey of variation in the genus Amazona using calls from sound libraries. We find strikingly similar patterns to those previously found in songbirds. Over 90% of parrots examined in the literature, and 69% of Amazona species surveyed, showed geographic variation consistent with a propensity to share local call types. This trait is evolutionarily labile and widespread; within Amazona most clades contained species with and without geographic variation, and most major lineages of parrots include representatives with dialects. We found little support for the long-standing hypothesis that dialects isolate populations and thus generate genetic differences among populations. Instead, most studies support the idea that dialects are maintained by social benefits of matching local call types, a finding that has implications for the management of captive and endangered populations. Considerable scope remains for studies that experimentally test hypotheses for the exact nature of these benefits, as well as studies that employ comparisons among species, to understand how the interplay between ecology, social dynamics and vocal learning capacities produces different patterns of variation across the parrots.

10.
Mol Phylogenet Evol ; 94(Pt A): 34-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26291569

RESUMO

Mitochondrial genome rearrangements that result in control region duplication have been described for a variety of birds, but the mechanisms leading to their appearance and maintenance remain unclear, and their effect on sequence evolution has not been explored. A recent survey of mitochondrial genomes in the Psittaciformes (parrots) found that control region duplications have arisen independently at least six times across the order. We analyzed complete mitochondrial genome sequences from 20 parrot species, including representatives of each lineage with control region duplications, to document the gene order changes and to examine effects of genome rearrangements on patterns of sequence evolution. The gene order previously reported for Amazona parrots was found for four of the six independently derived genome rearrangements, and a previously undescribed gene order was found in Prioniturus luconensis, representing a fifth clade with rearranged genomes; the gene order resulting from the remaining rearrangement event could not be confirmed. In all rearranged genomes, two copies of the control region are present and are very similar at the sequence level, while duplicates of the other genes involved in the rearrangement show signs of degeneration or have been lost altogether. We compared rates of sequence evolution in genomes with and without control region duplications and did not find a consistent acceleration or deceleration associated with the duplications. This could be due to the fact that most of the genome rearrangement events in parrots are ancient, and additionally, to an effect of body size on evolutionary rate that we found for mitochondrial but not nuclear sequences. Base composition analyses found that relative to other birds, parrots have unusually strong compositional asymmetry (AT- and GC-skew) in their coding sequences, especially at fourfold degenerate sites. Furthermore, we found higher AT skew in species with control region duplications. One potential cause for this compositional asymmetry is that parrots have unusually slow mtDNA replication. If this is the case, then any replicative advantage provided by having a second control region could result in selection for maintenance of both control regions once duplicated.


Assuntos
Evolução Molecular , Genoma Mitocondrial/genética , Mutagênese/genética , Papagaios/genética , Animais , Composição de Bases , DNA Mitocondrial/genética , Feminino , Duplicação Gênica/genética , Ordem dos Genes , Masculino , Taxa de Mutação , Papagaios/classificação , Sequências Reguladoras de Ácido Nucleico/genética
11.
Mol Ecol ; 24(9): 2164-76, 2015 05.
Artigo em Inglês | MEDLINE | ID: mdl-25873354

RESUMO

While genetic diversity is hypothesized to be an important factor explaining invasion success, there is no consensus yet on how variation in source populations or demographic processes affects invasiveness. We used mitochondrial DNA haplotypic and microsatellite genotypic data to investigate levels of genetic variation and reconstruct the history of replicate invasions on three continents in a globally invasive bird, the monk parakeet (Myiopsitta monachus). We evaluated whether genetic diversity at invasive sites could be explained by (i) the native source populations from which they were derived and (ii) demographic bottlenecks during introduction. Genetic data indicated a localized source area for most sampled invasive populations, with limited evidence for admixing of native source populations. This pattern largely coincides with historical data on pet trade exports. However, the invasive populations are genetically more similar than predicted from the export data alone. The extent of bottleneck effects varied among invasive populations. The observed low genetic diversity, evidence of demographic contraction and restricted source area do not support the hypothesis that invasion is favoured by the mixing and recombining of genetic variation from multiple source populations. Instead, they suggest that reduced genetic variation through random processes may not inhibit successful establishment and invasion in this species. However, convergent selection across invasive sites could also explain the observed patterns of reduction and similarity in genetic variation and/or the restricted source area. In general, the alternative explanation of intraspecific variation in invasive potential among genotypes or geographic areas is neglected, but warrants more attention as it could inform comparative studies and management of biological invaders.


Assuntos
Variação Genética , Genética Populacional , Espécies Introduzidas , Periquitos/genética , Animais , DNA Mitocondrial/genética , Geografia , Haplótipos , Repetições de Microssatélites , Dados de Sequência Molecular , Seleção Genética , Análise de Sequência de DNA
12.
Mol Phylogenet Evol ; 90: 34-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25929786

RESUMO

The lories and lorikeets (Aves: Loriinae: Loriini) are a readily recognizable, discrete group of nectarivorous parrots confined to the Indo-Pacific region between Wallace's Line and the Pitcairn Island group in the central-east Pacific Ocean. We present the first phylogenetic analysis of all currently recognized genera in the group using two mitochondrial and five nuclear loci. Our analyses suggest a New Guinean origin for the group at about 10million years ago (95% HPD 4.8-14.8) but this origin must be interpreted within the context of that island's complicated, recent geological history. That is, the origin and early diversification of the group may have taken place as New Guinea's Central Cordillera arose and the final constituent terranes that form present-day New Guinea were accreted. The latter activity may have promoted dispersal as a key element in the group's history. We have detected several instances of dispersal out of New Guinea that we argue constitute instances of founder-event speciation. Some phenotypically cohesive genera are affirmed as monophyletic but other genera are clearly in need of taxonomic dismantlement and reclassification. We recognize Parvipsitta Mathews, 1916 for two species usually placed in Glossopsitta and we advocate transfer of Chalcopsitta cardinalis into Pseudeos Peters, 1935. Other non-monophyletic genera such as Charmosyna, Psitteuteles and, probably, Trichoglossus, require improved taxon sampling and further phylogenetic analysis before their systematics can be resolved. Cursory examination of trait mapping across the group suggests that many traits are ancestral and of little use in determining genus-level systematics.


Assuntos
Papagaios/classificação , Papagaios/genética , Filogenia , Animais , DNA/análise , DNA Mitocondrial/análise , Bases de Dados Genéticas , Loci Gênicos , Nova Guiné , Análise de Sequência de DNA
13.
Sensors (Basel) ; 15(12): 31751-61, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26694402

RESUMO

We present an interdisciplinary effort to record feeding behaviors and control the diet of a hummingbird species (Phaethornis longirostris, the long-billed hermit or LBH) by developing a Radio Frequency Identification (RFID) based smart feeder. The system contains an RFID reader, a microcontroller, and a servo-controlled hummingbird feeder opener; the system is presented as a tool for studying the cognitive ability of the LBH species. When equipped with glass capsule RFID tags (which are mounted on the hummingbird), the smart feeder can provide specific diets for predetermined sets of hummingbirds at the discretion of biologists. This is done by reading the unique RFID tag on the hummingbirds and comparing the ID number with the pre-programmed ID numbers stored in the smart feeder. The smart feeder records the time and ID of each hummingbird visit. The system data is stored in a readily available SD card and is powered by two 9 V batteries. The detection range of the system is approximately 9-11 cm. Using this system, biologists can assign the wild hummingbirds to different experimental groups and monitor their diets to determine if they develop a preference to any of the available nectars. During field testing, the smart feeder system has demonstrated consistent detection (when compared to detections observed by video-recordings) of RFID tags on hummingbirds and provides pre-designed nectars varying water and sugar concentrations to target individuals. The smart feeder can be applied to other biological and environmental studies in the future.


Assuntos
Aves/fisiologia , Comportamento Alimentar/fisiologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/veterinária , Dispositivo de Identificação por Radiofrequência , Animais , Desenho de Equipamento , Monitorização Fisiológica/métodos
14.
Restor Ecol ; 22(3): 336-344, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-32327918

RESUMO

Woody plant encroachment into grasslands is a global concern. Efforts to restore grasslands often assume that removal of woody plants benefits biodiversity but assumptions are rarely tested. In the Chihuahuan Desert of the Southwestern United States, we tested whether abundances of grassland specialist bird species would be greater in plant communities resulting from treatment with herbicides to remove encroaching shrubs compared with untreated shrub-dominated areas that represented pre-treatment conditions. In 2010, we surveyed breeding birds and vegetation at 16 treated-untreated pairs. In 2011, we expanded the survey effort to 21 treated-untreated pairs, seven unpaired treatment areas, and five reference grassland areas. Vegetation in treatment areas had higher perennial grass foliar and basal cover and lower shrub foliar cover compared with untreated areas. Several regionally declining grassland specialists exhibited higher occurrence and relative abundance in treated areas. A shrubland specialist, however, was associated with untreated areas and may be negatively impacted by shrub removal. Bird community composition differed between treated and untreated areas in both years. Our results indicate that shrub removal can have positive effects on grassland specialist bird species, but that a mosaic of treated and untreated areas might be most beneficial for regional biodiversity.

15.
Mol Phylogenet Evol ; 64(2): 342-56, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22543055

RESUMO

Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome.


Assuntos
DNA Mitocondrial/genética , Papagaios/classificação , Papagaios/genética , Filogenia , Animais , Evolução Molecular , Duplicação Gênica , Genes Mitocondriais , Genoma Mitocondrial , Íntrons , Tipagem de Sequências Multilocus , RNA de Transferência/genética , Análise de Sequência de DNA
16.
Anim Cogn ; 15(4): 647-56, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22487728

RESUMO

Complex acoustic signals in many animal species are characterized by a syntax that governs how different notes are combined, but the importance of syntax to the communicative function of signals is not well understood. Mated pairs of yellow-naped amazons, Amazona auropalliata, produce coordinated vocal duets that are used for territory maintenance and defense. These duets follow rules that specify the ordering of notes within duets, such as a strict alternation of sex-specific notes and a defined progression of note types through each duet. These syntactical rules may function to define sex-specific roles, improve coordination, and allow individuals to combine calls into meaningful sequences. As a first step toward understanding the functional significance of syntax, we conducted two separate audio playback experiments in which we presented nesting pairs with normal duets and duets with broken syntax (i.e., one of the syntactic rules was broken). In Experiment One, we reversed the order of female and male notes within note pairs while retaining the typical progression of note types through a duet. In Experiment Two we reversed the order of note types across a whole duet while retaining the typical female-male ordering within note pairs. We hypothesized that duets with broken syntax would be less-effective signals than duets with normal syntax and predicted that pairs would respond less to broken syntax than to normal duets. Contrary to predictions, we did not observe differences in response between treatments for any variables except latency to approach the speaker. After we combined data across experiments post hoc, we observed longer latencies to approach the speakers after playbacks of broken syntax duets, suggesting that pairs could differentiate between playbacks. These responses suggest that breaking one rule of duet syntax at a time does not result in detectable loss of signal efficacy in the context of territorial intrusions.


Assuntos
Amazona , Vocalização Animal , Estimulação Acústica , Animais , Percepção Auditiva , Feminino , Masculino , Fatores Sexuais
17.
Integr Comp Biol ; 61(6): 2132-2144, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34279616

RESUMO

Global environmental changes induced by human activities are forcing organisms to respond at an unprecedented pace. At present we have only a limited understanding of why some species possess the capacity to respond to these changes while others do not. We introduce the concept of multidimensional phenospace as an organizing construct to understanding organismal evolutionary responses to environmental change. We then describe five barriers that currently challenge our ability to understand these responses: (1) Understanding the parameters of environmental change and their fitness effects, (2) Mapping and integrating phenotypic and genotypic variation, (3) Understanding whether changes in phenospace are heritable, (4) Predicting consistency of genotype to phenotype patterns across space and time, and (5) Determining which traits should be prioritized to understand organismal response to environmental change. For each we suggest one or more solutions that would help us surmount the barrier and improve our ability to predict, and eventually manipulate, organismal capacity to respond to anthropogenic change. Additionally, we provide examples of target species that could be useful to examine interactions between phenotypic plasticity and adaptive evolution in changing phenospace.


Assuntos
Evolução Biológica , Condicionamento Físico Animal , Adaptação Fisiológica , Animais , Genótipo , Fenótipo
18.
Mol Phylogenet Evol ; 59(3): 675-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21453777

RESUMO

The platycercine parrots of Australia, usually recognized as the Platycercinae or Platycercini, are the broad-tailed parrots and their allies typified by the rosellas Platycercus spp. Debate concerning their circumscription has most recently centerd on the position of four genera, Neophema, Neopsephotus, Pezoporus and Psittacella, the last two having never been adequately included in sequence-based analyses. We use broad taxon sampling, mitochondrial and nuclear DNA sequence data from seven independent loci (two linked mitochondrial loci and six nuclear loci), and both gene tree and species tree approaches to reconstruct phylogenies and so determine the systematic placement all four genera. Analyses of two data sets, one of 48 taxa and five loci and one of 27 taxa and the same five plus three additional loci produced broadly congruent and consistently well-resolved phylogenies. We reject placement of any of these four genera within core platycercines. Pezoporus is closely allied to Neophema and Neopsephotus. These three genera are the likely sister group to core platycercines and we advocate their recognition as a subfamily. Psittacella is the sole extant representative of a lineage that branched very early in the history of Australo-Papuan parrot fauna and is not closely related to any of the mostly south-east Asian and Indonesian psittaculine taxa with which it is more often linked. We present a revised view of the extraordinary phylogenetic, phenotypic and ecological diversity that is the adaptive radiation of Australo-Papuan parrots. Finally, our analyses highlight the likely paraphyly of Mayr's (2008) Loricoloriinae.


Assuntos
Papagaios/classificação , Papagaios/genética , Filogenia , Animais , DNA Mitocondrial/genética , Evolução Molecular
19.
Sci Rep ; 11(1): 11775, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083674

RESUMO

Cognitive abilities such as learning and memory are key for survival and reproduction. Individuals with high cognitive abilities may be more successful at attracting mates and producing offspring. However, empirical tests of and evidence supporting this hypothesis remain scarce. We measured cognitive performance of male budgerigars in four tasks: problem solving, detour reaching, seed discrimination, and spatial memory. We then tested female choice for male cognition at three stages of the mating choice process: social pairing, extra-pair mating, and continued reproductive investment with a social mate. We also measured female reproductive output. We used an integrative measure of male cognitive performance that encapsulates performance across all tasks, the 'composite cognitive score' by summing performance on the four tasks. In the first stage, females did not choose their social mates based on any of the measures of male cognitive performance. In the second stage, however, males with higher composite cognitive scores sired and raised more offspring. In the third stage, females increased their reproductive investment after the first breeding attempt when paired with males with higher detour-reaching scores. These results suggest that female reproductive decisions may shape overall male cognitive performance.


Assuntos
Comportamento Animal , Cognição , Desempenho Psicomotor , Animais , Feminino , Aptidão Genética , Masculino , Preferência de Acasalamento Animal , Fatores Sexuais , Comportamento Sexual Animal , Análise e Desempenho de Tarefas
20.
Neurosci Biobehav Rev ; 125: 328-338, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33621636

RESUMO

Vocal learning has evolved independently in several lineages. This complex cognitive trait is commonly treated as binary: species either possess or lack it. This view has been a useful starting place to examine the origins of vocal learning, but is also incomplete and potentially misleading, as specific components of the vocal learning program - such as the timing, extent and nature of what is learned - vary widely among species. In our review we revive an idea first proposed by Beecher and Brenowitz (2005) by describing six dimensions of vocal learning: (1) which vocalizations are learned, (2) how much is learned, (3) when it is learned, (4) who it is learned from, (5) what is the extent of the internal template, and (6) how is the template integrated with social learning and innovation. We then highlight key examples of functional and mechanistic work on each dimension, largely from avian taxa, and discuss how a multi-dimensional framework can accelerate our understanding of why vocal learning has evolved, and how brains became capable of this important behaviour.


Assuntos
Aprendizagem , Vocalização Animal , Animais , Aves , Encéfalo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA