Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Neurosurg Focus ; 57(1): E5, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38950445

RESUMO

OBJECTIVE: In the United States, more than 1 million sport-related concussions afflict children annually, with many cases undetected or unreported. The Sport Concussion Assessment Tool (SCAT) is widely used to detect concussions in high school, collegiate, and professional sports. The objective of this study was to establish baseline values for the SCAT version 5 (SCAT5) in high school athletes. METHODS: Baseline SCAT5 evaluations were conducted in students (ages 14-19 years) from 19 high schools in central Illinois who were participating in various school-sponsored sports. The SCAT5 evaluations were retrospectively extracted from the electronic medical record system for analysis. Statistical analyses included the Wilcoxon rank-sum test for continuous variables and the chi-square test for categorical variables, considering significance at p < 0.05. Test-retest reliability at < 6 months, 10-14 months, and 16-20 months was computed using intraclass correlation and Spearman's rho (ρ). Reliable change indices are provided using the Iverson formula. RESULTS: A total of 2833 unique athletes were included, and the average age was 15.5 ± 1.14 (SD) years. There were 721 female (25.5%) and 2112 male (74.5%) athletes. Students ≥ 15 years old had more prior concussions (p < 0.001), and male athletes were more frequently hospitalized for head injury (p = 0.013). Female athletes exhibited a significantly higher prevalence of mood disorders (14.7% vs 4.6%, p < 0.001), whereas attention-deficit/hyperactivity disorder was more common in male athletes (5.2% vs 13.2%, p < 0.001). Symptom number and severity were significantly greater in female athletes (3.17 ± 4.39 vs 2.08 ± 3.49, p < 0.001; 5.47 ± 9.21 vs 3.52 ± 7.26, p < 0.001, respectively), with mood-related symptoms representing the largest differences. Female athletes and students ≥ 15 years old performed better on most cognitive assessments. Female athletes and students < 15 years old performed better on the modified Balance Error Scoring System (p < 0.001). Test-retest reliability was poor to moderate for most assessment components. Reliable change index cutoff values differed slightly by sex, with female athletes often having a greater cutoff value. CONCLUSIONS: This study underscores the variability of SCAT5 baseline values influenced by age, sex, and medical history among adolescent athletes. It provides a robust dataset, delineating baseline values stratified by sex and age within this demographic. Additionally, the results provide enhanced guidance to clinicians for interpretation of change and reliability of baselines.


Assuntos
Atletas , Traumatismos em Atletas , Concussão Encefálica , Humanos , Adolescente , Masculino , Feminino , Concussão Encefálica/diagnóstico , Concussão Encefálica/epidemiologia , Reprodutibilidade dos Testes , Adulto Jovem , Traumatismos em Atletas/diagnóstico , Estudos Retrospectivos , Testes Neuropsicológicos/normas , Instituições Acadêmicas , Estudantes/estatística & dados numéricos
2.
J Magn Reson Imaging ; 57(3): 661-669, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36173367

RESUMO

The use of 7 Tesla (T) magnetic resonance imaging (MRI) is expanding across neurosurgical and neurologic specialties. However, few neurosurgical-related implants have been tested for safety at 7 T, limiting its use in patients with cranial fixation, shunt placements, and other implants. Implant safety can be determined via the American Society for Testing Materials International (ASTM) guidelines. To assess the current state of neurosurgical implant safety at 7 T, a systematic search was performed using PubMed, MEDLINE, Web of Knowledge, and citation matching. Studies written in English that included at least one neurosurgical implant and at least one safety outcome were included. Data were extracted for implant studied, implant composition, deflection angle, torque, temperature change, and ASTM guidelines followed. PRISMA reporting guidelines for scoping reviews were followed. Overall, 18 studies consisting of 45 unique implants were included. Implants included cranial fixation devices, aneurysm clips, spinal rods, pedicle screws, ventriculoperitoneal (VP) shunts, deep brain stimulation devices, and electroencephalogram (EEG) caps and electrodes. Cranial fixation devices, deep brain stimulation devices, spinal rods, and pedicle screws are likely 7 T MRI compatible based on outcomes reported. Aneurysm clips and EEG devices had variable safety outcomes. The VP shunts studied lost functionality after 7 T MRI exposure. We identified several implants that are likely compatible with 7 T MRI. Given the growth in 7 T imaging and expansion of the technology, neurosurgical implants should be constructed with the aforementioned considerations. Caution must be taken with all implants, especially aneurysm clips, programmable VP shunts, and EEG recording devices. It is also noteworthy that several implant testing reports did not report following ASTM standards. This scoping review seeks to concisely summarize all neurosurgical-related implants that have been tested for safety in 7 T MRI. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Aneurisma , Próteses e Implantes , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos
3.
Childs Nerv Syst ; 37(8): 2695-2698, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030603

RESUMO

The authors describe a follow-up to a case of a 19-year-old female with shunted aqueductal stenosis who presented with low-pressure hydrocephalus during a shunt malfunction. Shortly after management with CSF drainage at negative pressure, a magnetic resonance elastography scan was performed and revealed very low brain stiffness (high compliance). Here we present the case of the same patient seen 2 years later, now 21 years old, who again received a magnetic resonance elastography scan after receiving treatment for another shunt malfunction, this time with high intracranial pressure. This scan revealed recovery of brain stiffness to a near normal value for the patients' age. This observation suggests the low brain stiffness observed during the low-pressure hydrocephalus event is reversible. The authors discuss these findings in relation to biomechanical hypotheses of low-pressure hydrocephalus.


Assuntos
Hidrocefalia de Pressão Normal , Hidrocefalia , Adulto , Encéfalo/diagnóstico por imagem , Aqueduto do Mesencéfalo , Derivações do Líquido Cefalorraquidiano , Drenagem , Feminino , Humanos , Hidrocefalia/complicações , Hidrocefalia/diagnóstico por imagem , Hidrocefalia de Pressão Normal/diagnóstico por imagem , Hidrocefalia de Pressão Normal/cirurgia , Pressão Intracraniana , Adulto Jovem
4.
Pediatr Neurosurg ; 51(5): 257-62, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27198914

RESUMO

The authors describe the case of a 19-year-old female with shunted aqueductal stenosis who presented with low-pressure hydrocephalus that responded to negative pressure drainage. A magnetic resonance elastography scan performed 3 weeks later demonstrated very low brain tissue stiffness (high brain tissue compliance). An analysis of the importance of this finding in understanding this rare condition is discussed.


Assuntos
Encéfalo/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Hidrocefalia/diagnóstico por imagem , Feminino , Humanos , Masculino , Adulto Jovem
5.
Geroscience ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598069

RESUMO

As of 2023, it is estimated that 6.7 million individuals in the United States live with Alzheimer's disease (AD). Prior research indicates that AD disproportionality affects females; females have a greater incidence rate, perform worse on a variety of neuropsychological tasks, and have greater total brain atrophy. Recent research shows that hippocampal functional connectivity differs by sex and may be related to the observed sex differences in AD, and apolipoprotein E (ApoE) ε4 carriers have reduced hippocampal functional connectivity. The purpose of this study was to determine if the ApoE genotype plays a role in the observed sex differences in hippocampal functional connectivity in Alzheimer's disease. The resting state fMRI and T2 MRI of individuals with AD (n = 30, female = 15) and cognitively normal individuals (n = 30, female = 15) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed using the functional connectivity toolbox (CONN). Our results demonstrated intrahippocampal functional connectivity differed between those without an ε4 allele and those with at least one ε4 allele in each group. Additionally, intrahippocampal functional connectivity differed only by sex when Alzheimer's participants had at least one ε4 allele. These results improve our current understanding of the role of the interacting relationship between sex, ApoE genotype, and hippocampal function in AD. Understanding these biomarkers may aid in the development of sex-specific interventions for improved AD treatment.

6.
Am J Cardiol ; 201: 239-246, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392607

RESUMO

The use of 7 Tesla (T) magnetic resonance imaging (MRI) is expanding across medical specialties, particularly, clinical neurosciences and orthopedics. Investigational 7 T MRI has also been performed in cardiology. A limiting factor for expansion of the role of 7 T, irrespective of the body part being imaged, is the sparse testing of biomedical implant compatibility at field strengths >3 T. Implant compatibility can be tested following the American Society for Testing and Materials International guidelines. To assess the current state of cardiovascular implant safety at field strengths >3 T, a systematic search was performed using PubMed, Web of Science, and citation matching. Studies written in English that included at least 1 cardiovascular-related implant and at least 1 safety outcome (deflection angle, torque, or temperature change) were included. Data were extracted for the implant studied, implant composition, deflection angle, torque, and temperature change, and the American Society for Testing and Materials International standards were followed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines for scoping reviews were followed. A total of 9 studies were included. A total of 34 cardiovascular-related implants tested ex vivo at 7 T and 91 implants tested ex vivo at 4.7 T were included. The implants included vascular grafts and conduits, vascular access ports, peripheral and coronary stents, caval filters, and artificial valves. A total of 2 grafts, 1 vascular access port, 2 vena cava filters, and 5 stents were identified as incompatible with the 7 T MRI. All incompatible stents were 40 mm in length. Based on the safety outcomes reported, we identify several implants that may be compatible with >3 T MRI. This scoping review seeks to concisely summarize all the cardiovascular-related implants tested for ultrahigh field MRI compatibility to date.


Assuntos
Imageamento por Ressonância Magnética , Stents , Humanos , Imageamento por Ressonância Magnética/métodos , Procedimentos Cirúrgicos Vasculares
7.
Front Neurol ; 13: 857825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35449515

RESUMO

Importance: Gliomas, tumors of the central nervous system, are classically diagnosed through invasive surgical biopsy and subsequent histopathological study. Innovations in ultra-high field (UHF) imaging, namely 7-Tesla magnetic resonance imaging (7T MRI) are advancing preoperative tumor grading, visualization of intratumoral structures, and appreciation of small brain structures and lesions. Objective: Summarize current innovative uses of UHF imaging techniques in glioma diagnostics and treatment. Methods: A systematic review in accordance with PRISMA guidelines was performed utilizing PubMed. Case reports and series, observational clinical trials, and randomized clinical trials written in English were included. After removing unrelated studies and those with non-human subjects, only those related to 7T MRI were independently reviewed and summarized for data extraction. Some preclinical animal models are briefly described to demonstrate future usages of ultra-high-field imaging. Results: We reviewed 46 studies (43 human and 3 animal models) which reported clinical usages of UHF MRI in the diagnosis and management of gliomas. Current literature generally supports greater resolution imaging from 7T compared to 1.5T or 3T MRI, improving visualization of cerebral microbleeds and white and gray matter, and providing more precise localization for radiotherapy targeting. Additionally, studies found that diffusion or susceptibility-weighted imaging techniques applied to 7T MRI, may be used to predict tumor grade, reveal intratumoral structures such as neovasculature and microstructures like axons, and indicate isocitrate dehydrogenase 1 mutation status in preoperative imaging. Similarly, newer imaging techniques such as magnetic resonance spectroscopy and chemical exchange saturation transfer imaging can be performed on 7T MRI to predict tumor grading and treatment efficacy. Geometrical distortion, a known challenge of 7T MRI, was at a tolerable level in all included studies. Conclusion: UHF imaging has the potential to preoperatively and non-invasively grade gliomas, provide precise therapy target areas, and visualize lesions not seen on conventional MRI.

8.
Neuroimage Clin ; 27: 102313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32585569

RESUMO

Mesial temporal lobe epilepsy (MTLE) is the most common form of refractory epilepsy. Common imaging biomarkers are often not sensitive enough to identify MTLE sufficiently early to facilitate the greatest benefit from surgical or pharmacological intervention. The objective of this work is to establish hippocampal stiffness measured with magnetic resonance elastography (MRE) as a biomarker for MTLE; we hypothesized that the epileptogenic hippocampus in MTLE is stiffer than the non-epileptogenic hippocampus. MRE was used to measure hippocampal stiffness in a group of patients with unilateral MTLE (n = 12) and a group of healthy comparison participants (n = 13). We calculated the ratio of hippocampal stiffness ipsilateral to epileptogenesis to the contralateral side for both groups. We found a higher hippocampal stiffness ratio in patients with MTLE compared with healthy participants (1.14 v. 0.99; p = 0.004), and that stiffness ratio differentiated MTLE from control groups effectively (AUC = 0.85). Hippocampal stiffness ratio, when added to volume ratio, an established MTLE biomarker, significantly improved the ability to differentiate the two groups (p = 0.038). Stiffness measured with MRE is sensitive to hippocampal pathology in MTLE and the addition of MRE to neuroimaging assessments may improve detection and characterization of the disease.


Assuntos
Técnicas de Imagem por Elasticidade , Epilepsia do Lobo Temporal , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Voluntários Saudáveis , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Esclerose/patologia
9.
J Mol Neurosci ; 19(1-2): 227-31, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12212786

RESUMO

We briefly review the extant human and animal literature on the influence of fitness training on brain, cognition and performance. The animal research provides clear support for neurochemical and structural changes in brain with fitness training. The human literature suggests reliable but process specific changes in cognition with fitness training for young and old adults. We describe a research program which examines the influence of aerobic fitness training on the functional activity of the human using event-related functional magnetic resonance imaging, of humans in fitness interventions.


Assuntos
Transtornos Cognitivos/terapia , Cognição , Exercício Físico , Adulto , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/prevenção & controle , Humanos , Imageamento por Ressonância Magnética , Aptidão Física
10.
J Neurotrauma ; 30(11): 897-906, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23363551

RESUMO

Traumatic brain injury (TBI) is a global public health epidemic. In the US alone, more than 3 million people sustain a TBI annually. It is one of the most disabling injuries as it may cause motor and sensory deficits and lead to severe cognitive, emotional, and psychosocial impairment, crippling vital areas of higher functioning. Fueled by the recognition of TBI as the "signature injury" in our wounded soldiers in Iraq and Afghanistan, and its often devastating impact on athletes playing contact sports, interest in TBI and TBI research has increased dramatically. Unfortunately, despite increased awareness of its detrimental consequences, there has been little progress in developing effective TBI interventions. Recent evidence, however, strongly indicates that nutritional intervention may provide a unique opportunity to enhance the neuronal repair process after TBI. To date, two omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have the most promising laboratory evidence for their neuro-restorative capacities in TBI. Although both animal models and human studies of brain injuries suggest they may provide benefits, there has been no clinical trial evaluating the effects of n-3 fatty acids on resilience to, or treatment, of TBI. This article reviews the known functions of n-3 fatty acids in the brain and their specific role in the cellular and biochemical pathways underlying neurotraumatic injury. We also highlight recent studies on the therapeutic impact of enhanced omega 3 intake in vivo, and how this may be a particularly promising approach to improving functional outcome in patients with TBI.


Assuntos
Lesões Encefálicas/dietoterapia , Ácidos Graxos Ômega-3/administração & dosagem , Animais , Suplementos Nutricionais , Humanos
11.
J Clin Exp Neuropsychol ; 30(8): 931-45, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18608659

RESUMO

We describe the case of Angie, a 50-year-old woman with profound amnesia (General Memory Index = 49, Full Scale IQ = 126) following a closed head injury in 1985. This case is unique in comparison to other cases reported in the literature in that, despite the severity of her amnesia, she has developed remarkable real-world life abilities, shows impressive self-awareness and insight into the impairment and sparing of various functional memory abilities, and exhibits ongoing maturation of her identity and sense of self following amnesia. The case provides insights into the interaction of different memory and cognitive systems in handling real-world memory demands and has implications for rehabilitation and for successful life outcome after amnesia.


Assuntos
Atividades Cotidianas/psicologia , Amnésia Anterógrada/complicações , Amnésia Anterógrada/psicologia , Transtornos Cognitivos/etiologia , Função Executiva/fisiologia , Memória/fisiologia , Feminino , Humanos , Inteligência , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fala
12.
Brain Cogn ; 49(3): 277-96, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12139955

RESUMO

Several recent studies of aging and cognition have attributed decreases in the efficiency of working memory processes to possible declines in attentional control, the mechanism(s) by which the brain attempts to limit its processing to that of task-relevant information. Here we used fMRI measures of neural activity during performance of the color-word Stroop task to compare the neural substrates of attentional control in younger (ages: 21-27 years old) and older participants (ages: 60-75 years old) during conditions of both increased competition (incongruent and congruent neutral) and increased conflict (incongruent and congruent neutral). We found evidence of age-related decreases in the responsiveness of structures thought to support attentional control (e.g., dorsolateral prefrontal and parietal cortices), suggesting possible impairments in the implementation of attentional control in older participants. Consistent with this notion, older participants exhibited more extensive activation of ventral visual processing regions (i.e., temporal cortex) and anterior inferior prefrontal cortices, reflecting a decreased ability to inhibit the processing of task-irrelevant information. Also, the anterior cingulate cortex, a region involved in evaluatory processes at the level of response (e.g., detecting potential for error), showed age-related increases in its sensitivity to the presence of competing color information. These findings are discussed in terms of newly emerging models of attentional control in the human brain.


Assuntos
Atenção , Encéfalo/patologia , Imageamento por Ressonância Magnética , Testes Psicológicos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Parietal/patologia , Córtex Pré-Frontal/patologia , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA