Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Adv Sci (Weinh) ; : e2308212, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430532

RESUMO

Substantial evidence has shown that the Circadian Locomotor Output Cycles Kaput (Clock) gene is a core transcription factor of circadian rhythms that regulates dopamine (DA) synthesis. To shed light on the mechanism of this interaction, flexible multielectrode arrays (MEAs) are developed that can measure both DA concentrations and electrophysiology chronically. The dual functionality is enabled by conducting polymer PEDOT doped with acid-functionalized carbon nanotubes (CNT). The PEDOT/CNT microelectrode coating maintained stable electrochemical impedance and DA detection by square wave voltammetry for 4 weeks in vitro. When implanted in wild-type (WT) and Clock mutation (MU) mice, MEAs measured tonic DA concentration and extracellular neural activity with high spatial and temporal resolution for 4 weeks. A diurnal change of DA concentration in WT is observed, but not in MU, and a higher basal DA concentration and stronger cocaine-induced DA increase in MU. Meanwhile, striatal neuronal firing rate is found to be positively correlated with DA concentration in both animal groups. These findings offer new insights into DA dynamics in the context of circadian rhythm regulation, and the chronically reliable performance and dual measurement capability of this technology hold great potential for a broad range of neuroscience research.

2.
Microsyst Nanoeng ; 10: 91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947533

RESUMO

Targeted delivery of neurochemicals and biomolecules for neuromodulation of brain activity is a powerful technique that, in addition to electrical recording and stimulation, enables a more thorough investigation of neural circuit dynamics. We have designed a novel, flexible, implantable neural probe capable of controlled, localized chemical stimulation and electrophysiology recording. The neural probe was implemented using planar micromachining processes on Parylene C, a mechanically flexible, biocompatible substrate. The probe shank features two large microelectrodes (chemical sites) for drug loading and sixteen small microelectrodes for electrophysiology recording to monitor neuronal response to drug release. To reduce the impedance while keeping the size of the microelectrodes small, poly(3,4-ethylenedioxythiophene) (PEDOT) was electrochemically coated on recording microelectrodes. In addition, PEDOT doped with mesoporous sulfonated silica nanoparticles (SNPs) was used on chemical sites to achieve controlled, electrically-actuated drug loading and releasing. Different neurotransmitters, including glutamate (Glu) and gamma-aminobutyric acid (GABA), were incorporated into the SNPs and electrically triggered to release repeatedly. An in vitro experiment was conducted to quantify the stimulated release profile by applying a sinusoidal voltage (0.5 V, 2 Hz). The flexible neural probe was implanted in the barrel cortex of the wild-type Sprague Dawley rats. As expected, due to their excitatory and inhibitory effects, Glu and GABA release caused a significant increase and decrease in neural activity, respectively, which was recorded by the recording microelectrodes. This novel flexible neural probe technology, combining on-demand chemical release and high-resolution electrophysiology recording, is an important addition to the neuroscience toolset used to dissect neural circuitry and investigate neural network connectivity.

3.
Micromachines (Basel) ; 15(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38399004

RESUMO

Flexible multielectrode arrays with glassy carbon (GC) electrodes and metal interconnection (hybrid MEAs) have shown promising performance in multi-channel neurochemical sensing. A primary challenge faced by hybrid MEAs fabrication is the adhesion of the metal traces with the GC electrodes, as prolonged electrical and mechanical stimulation can lead to adhesion failure. Previous devices with GC electrodes and interconnects made of a homogeneous material (all GC) demonstrated exceptional electrochemical stability but required miniaturization for enhanced tissue integration and chronic electrochemical sensing. In this study, we used two different methods for the fabrication of all GC-MEAs on thin flexible substrates with miniaturized features. The first method, like that previously reported, involves a double pattern-transfer photolithographic process, including transfer-bonding on temporary polymeric support. The second method requires a double-etching process, which uses a 2 µm-thick low stress silicon nitride coating of the Si wafer as the bottom insulator layer for the MEAs, bypassing the pattern-transfer and demonstrating a novel technique with potential advantages. We confirmed the feasibility of the two fabrication processes by verifying the practical conductivity of 3 µm-wide 2 µm-thick GC traces, the GC microelectrode functionality, and their sensing capability for the detection of serotonin using fast scan cyclic voltammetry. Through the exchange and discussion of insights regarding the strengths and limitations of these microfabrication methods, our goal is to propel the advancement of GC-based MEAs for the next generation of neural interface devices.

4.
Adv Healthc Mater ; : e2302362, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563704

RESUMO

Cerebral neural electronics play a crucial role in neuroscience research with increasing translational applications such as brain-computer interfaces for sensory input and motor output restoration. While widely utilized for decades, the understanding of the cellular mechanisms underlying this technology remains limited. Although two-photon microscopy (TPM) has shown great promise in imaging superficial neural electrodes, its application to deep-penetrating electrodes is technically difficult. Here, a novel device integrating transparent microelectrode arrays with glass microprisms, enabling electrophysiology recording and stimulation alongside TPM imaging across all cortical layers in a vertical plane, is introduced. Tested in Thy1-GCaMP6 mice for over 4 months, the integrated device demonstrates the capability for multisite electrophysiological recording/stimulation and simultaneous TPM calcium imaging. As a proof of concept, the impact of microstimulation amplitude, frequency, and depth on neural activation patterns is investigated using the setup. With future improvements in material stability and single unit yield, this multimodal tool greatly expands integrated electrophysiology and optical imaging from the superficial brain to the entire cortical column, opening new avenues for neuroscience research and neurotechnology development.

5.
Vaccines (Basel) ; 12(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793725

RESUMO

Real-world clinical experience of using anti-programmed death-ligand 1 (PD-L1) immune checkpoint inhibitors (ICIs) combined with chemotherapy in the first-line treatment of extensive-stage small-cell lung cancer (SCLC) patients has rarely been reported. In this study, we aimed to perform a retrospective multicenter clinical analysis of extensive-stage SCLC patients receiving first-line therapy with anti-PD-L1 ICIs combined with chemotherapy. Between November 2018 and March 2022, 72 extensive-stage SCLC patients receiving first-line atezolizumab or durvalumab in combination with chemotherapy, according to the cancer center databases of Linkou, Chiayi, and Kaohsiung Chang Gung Memorial Hospitals, were retrospectively included in the analysis. Twenty-one patients (29.2%) received atezolizumab and fifty-one (70.8%) received durvalumab. Objective response (OR) and disease control (DC) rates of 59.7% and 73.6%, respectively, were observed with first-line ICI plus chemotherapy. The median progression-free survival (PFS) was 6.63 months (95% confidence interval (CI), 5.25-8.02), and the median overall survival (OS) was 16.07 months (95% CI, 15.12-17.0) in all study patients. A high neutrophil-to-lymphocyte ratio (NLR; >4) and a high serum lactate dehydrogenase (LDH) concentration (>260 UL) were identified as independent unfavorable factors associated with shorter OS in the multivariate analysis. Regarding safety, neutropenia was the most common grade 3 treatment-related adverse event (AE), but no treatment-related deaths occurred in the study patients. First-line anti-PD-L1 ICIs combined with chemotherapy are effective and safe for male extensive-stage SCLC patients. Further therapeutic strategies may need to be developed for patients with unfavorable outcomes (e.g., baseline high NLR and serum LDH level).

6.
Micromachines (Basel) ; 14(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36838023

RESUMO

The number of people aged 12 years and older using illicit drugs reached 59.3 million in 2020, among which 5.2 million are cocaine users based on the national data. In order to fully understand cocaine addiction and develop effective therapies, a tool is needed to reliably measure real-time cocaine concentration and neural activity in different regions of the brain with high spatial and temporal resolution. Integrated biochemical sensing devices based upon flexible microelectrode arrays (MEA) have emerged as a powerful tool for such purposes; however, MEAs suffer from undesired biofouling and inflammatory reactions, while those with immobilized biologic sensing elements experience additional failures due to biomolecule degradation. Aptasensors are powerful tools for building highly selective sensors for analytes that have been difficult to detect. In this work, DNA aptamer-based electrochemical cocaine sensors were integrated on flexible MEAs and protected with an antifouling zwitterionic poly (sulfobetaine methacrylate) (PSB) coating, in order to prevent sensors from biofouling and degradation by the host tissue. In vitro experiments showed that without the PSB coating, both adsorption of plasma protein albumin and exposure to DNase-1 enzyme have detrimental effects on sensor performance, decreasing signal amplitude and the sensitivity of the sensors. Albumin adsorption caused a 44.4% sensitivity loss, and DNase-1 exposure for 24 hr resulted in a 57.2% sensitivity reduction. The PSB coating successfully protected sensors from albumin fouling and DNase-1 enzyme digestion. In vivo tests showed that the PSB coated MEA aptasensors can detect repeated cocaine infusions in the brain for 3 hrs after implantation without sensitivity degradation. Additionally, the same MEAs can record electrophysiological signals at different tissue depths simultaneously. This novel flexible MEA with integrated cocaine sensors can serve as a valuable tool for understanding the mechanisms of cocaine addiction, while the PSB coating technology can be generalized to improve all implantable devices suffering from biofouling and inflammatory host responses.

7.
Histol Histopathol ; 38(12): 1453-1464, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36912070

RESUMO

Lung cancer, one of the most frequently diagnosed cancers, causes a huge number of mortalities globally. Among lung cancers, non-small cell lung cancer (NSCLC) is the most recorded. Despite accumulating research, the molecular basis of NSCLC progression remains poorly known. Therefore, we aim to assess the function of NCK1-AS1 in NSCLC and elucidate the molecular mechanism. Firstly, we quantified the NCK1-AS1 level in tumors and adjacent healthy tissues. NCK1-AS1 was significantly upregulated in NSCLC tumors, which was associated with poor prognosis in patients. Silencing NCK1-AS1 significantly inhibited the proliferation, migration, and invasion, as well as the EMT of NSCLC cell lines. Starbase bioinformatic prediction revealed that NCK1-AS1 targets miR-361-5p which acts to regulate ADAM10 gene expression. Our result showed that NCK1-AS1 upregulation markedly reduced miR-361-5p mRNA expression, while increasing ADAM10 expression. For the first time, we demonstrated that NCK1-AS1 regulates the miR-361-5p/ADAM10 axis, thereby promoting NSCLC progression. NCK1-AS1 might be developed as a therapeutic target for treating NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo
8.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711655

RESUMO

Real-time multi-channel measurements of tonic serotonin (5-hydroxytryptamine, 5-HT) concentrations across different brain regions are of utmost importance to the understanding of 5-HT’s role in anxiety, depression, and impulse control disorders, which will improve the diagnosis and treatment of these neuropsychiatric illnesses. Chronic sampling of 5-HT is critical in tracking disease development as well as the time course of pharmacological treatments. Despite their value, in vivo chronic multi-site measurements of 5-HT have not been reported. To fill this technological gap, we batch fabricated implantable glassy carbon (GC) microelectrode arrays (MEAs) on a flexible SU-8 substrate to provide an electrochemically stable and biocompatible device/tissue interface. Then, to achieve multi-site detection of tonic 5-HT concentrations, we incorporated the poly(3,4-ethylenedioxythiophene)/functionalized carbon nanotube (PEDOT/CNT) coating on the GC microelectrodes in combination with a new square wave voltammetry (SWV) approach, optimized for selective 5-HT measurement. In vitro , the PEDOT/CNT coated GC microelectrodes achieved high sensitivity towards 5-HT, good fouling resistance in the presence of 5-HT, and excellent selectivity towards the most common neurochemical interferents. In vivo , our PEDOT/CNT-coated GC MEAs were able to successfully detect basal 5-HT concentrations at different locations of the CA2 hippocampal region of mice in both anesthetized and awake head-fixed conditions. Furthermore, the implanted PEDOT/CNT-coated MEA achieved stable detection of tonic 5-HT concentrations for one week. Finally, histology data in the hippocampus shows reduced tissue damage and inflammatory responses compared to stiff silicon probes. To the best of our knowledge, this PEDOT/CNT-coated GC MEA is the first implantable flexible multisite sensor capable of chronic in vivo multi-site sensing of tonic 5-HT. This implantable MEA can be custom-designed according to specific brain region of interests and research questions, with the potential to combine electrophysiology recording and multiple analyte sensing to maximize our understanding of neurochemistry. Highlights: PEDOT/CNT-coated GC microelectrodes enabled sensitive and selective tonic detection of serotonin (5-HT) using a new square wave voltammetry (SWV) approach PEDOT/CNT-coated GC MEAs achieved multi-site in vivo 5-HT tonic detection for one week. Flexible MEAs lead to reduced tissue damage and inflammation compared to stiff silicon probes.

9.
Front Plant Sci ; 14: 1209999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496858

RESUMO

Salt stress impacts growth and physiological processes in plants, and some plants exposed to salt stress will produce physiological mechanisms to adapt to the new environment. However, the effects of combined NaCl and NaHCO3 stress on the seedlings of Acer species are understudied. In this study, we designed an experiment to measure physiological characteristics by establishing a range of NaCl and NaHCO3 concentrations (0, 25, 50, 75, and 100 mmol L-1) to estimate the compound salt tolerance of Acer ginnala and Acer palmatum. When the concentrations of NaCl and NaHCO3 were 25 mmol L-1, the leaf water content, relative conductivity, malondialdehyde (MDA) content, proline content, soluble sugar content, and chlorophyll did not change (p > 0.05) in two maple seedlings. At concentrations greater than 50 mmol L-1, the relative conductivity and MDA content increased, proline and soluble sugars accumulated, and the potential activity of PS II (Fv/Fo), potential photochemical efficiency of PS II (Fv/Fm), PS II actual photochemical efficiency (Yield), and photosynthetic electron transfer efficiency (ETR) decreased (p < 0.05). The superoxide dismutase (SOD) and catalase (CAT) activities showed the same trend of first increasing and then decreasing (p < 0.05). The peroxidase (POD) activity increased only when concentrations of NaCl and NaHCO3 were 100 mmol L-1, while there was no statistical difference between the other treatments and the control. Therefore, the two maple seedlings adjusted their osmotic balance and alleviated oxidative stress by accumulating proline, soluble sugars and increasing CAT and SOD activities. Further analysis showed that both species are salt tolerant and the salt tolerance of Acer ginnala is better than that of Acer palmatum.

10.
Biosens Bioelectron ; 230: 115242, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989659

RESUMO

Chronic sampling of tonic serotonin (5-hydroxytryptamine, 5-HT) concentrations in the brain is critical for tracking neurological disease development and the time course of pharmacological treatments. Despite their value, in vivo chronic multi-site measurements of tonic 5-HT have not been reported. To fill this technological gap, we batch-fabricated implantable glassy carbon (GC) microelectrode arrays (MEAs) onto a flexible SU-8 substrate to provide an electrochemically stable and biocompatible device/tissue interface. To achieve detection of tonic 5-HT concentrations, we applied a poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) electrode coating and optimized a square wave voltammetry (SWV) waveform for selective 5-HT measurement. In vitro, the PEDOT/CNT-coated GC microelectrodes achieved high sensitivity to 5-HT, good fouling resistance, and excellent selectivity against the most common neurochemical interferents. In vivo, our PEDOT/CNT-coated GC MEAs successfully detected basal 5-HT concentrations at different locations within the CA2 region of the hippocampus of both anesthetized and awake mice. Furthermore, the PEDOT/CNT-coated MEAs were able to detect tonic 5-HT in the mouse hippocampus for one week after implantation. Histology reveals that the flexible GC MEA implants caused less tissue damage and reduced inflammatory response in the hippocampus compared to commercially available stiff silicon probes. To the best of our knowledge, this PEDOT/CNT-coated GC MEA is the first implantable, flexible sensor capable of chronic in vivo multi-site sensing of tonic 5-HT.


Assuntos
Técnicas Biossensoriais , Serotonina , Camundongos , Animais , Microeletrodos , Polímeros/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes
11.
Front Oncol ; 12: 824308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359368

RESUMO

Immune checkpoint inhibitor (ICI) treatment has dramatically revolutionized the landscape of therapeutic approaches in multiple cancers, particularly, non-small-cell lung cancer (NSCLC). With the increasing use of programmed death-1 (PD-1) inhibitors in the clinic, the emerging toxicity profile presents a novel learning curve for clinicians. Here we report the first case of an NSCLC patient displaying sarcoid/granulomatous-like reaction (SLR, also known as GLR) in the liver during an anti-PD-1 therapy which showed efficacious response of complete regression. Also, this is the first report describing the SLR induced by toripalimab, a novel PD-1 inhibitor. Given this kind of hepatic findings can be easily mistaken as metastasis, even resulting in premature use of second-line treatments. In particular, we briefly review the clinical features of all those cases reporting sarcoidosis and SLRs manifested on different organs during anti-PD-(L)1 therapy. We anticipate that these clinical cases would help to alert the attention of clinicians that SLRs, as a rare immune-related adverse event (irAE), is manageable and that histopathological analysis is necessary before interpreting it as disease progression.

12.
Biosensors (Basel) ; 12(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35884343

RESUMO

Dopamine (DA) plays a central role in the modulation of various physiological brain functions, including learning, motivation, reward, and movement control. The DA dynamic occurs over multiple timescales, including fast phasic release, as a result of neuronal firing and slow tonic release, which regulates the phasic firing. Real-time measurements of tonic and phasic DA concentrations in the living brain can shed light on the mechanism of DA dynamics underlying behavioral and psychiatric disorders and on the action of pharmacological treatments targeting DA. Current state-of-the-art in vivo DA detection technologies are limited in either spatial or temporal resolution, channel count, longitudinal stability, and ability to measure both phasic and tonic dynamics. We present here an implantable glassy carbon (GC) multielectrode array on a SU-8 flexible substrate for integrated multichannel phasic and tonic measurements of DA concentrations. The GC MEA demonstrated in vivo multichannel fast-scan cyclic voltammetry (FSCV) detection of electrically stimulated phasic DA release simultaneously at different locations of the mouse dorsal striatum. Tonic DA measurement was enabled by coating GC electrodes with poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) and using optimized square-wave voltammetry (SWV). Implanted PEDOT/CNT-coated MEAs achieved stable detection of tonic DA concentrations for up to 3 weeks in the mouse dorsal striatum. This is the first demonstration of implantable flexible MEA capable of multisite electrochemical sensing of both tonic and phasic DA dynamics in vivo with chronic stability.


Assuntos
Dopamina , Nanotubos de Carbono , Animais , Encéfalo , Corpo Estriado , Humanos , Camundongos
13.
J Clin Med ; 11(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555926

RESUMO

Late-onset asthma (LOA) differs from early-onset asthma (EOA) in terms of prognosis and the treatment response because it has a much worse prognosis and a poorer response to standard asthma treatment. This study sought to investigate the characteristics and clinical outcomes of asthma patients with phenotypes distinguished by age at onset and atopy status. We prospectively recruited patients with asthma who were registered in a pay-for-performance program operated by Taiwan's National Health Insurance Administration (NHIA). These patients received regular outpatient treatment for at least 1 year at every outpatient clinic visit since 2019. Baseline characteristics and clinical outcomes were compared between patients with LOA (≥40 years) and those with EOA (<40 years). Of the consecutive 101 patients with asthma, 21 patients (20.7%) had EOA and 80 (79.3%) had LOA. In the 12-month period, patients with EOA had higher declines in forced expiratory volume in one second (FEV1; −2.1 ± 8.4 vs. 6.8 ± 13.1, % of predicted value, p = 0.037) and forced vital capacity (FVC; −4.6 ± 12.0 vs. 6.1 ± 13.6, % of predicted value, p = 0.023) than patients with LOA. Patients with nonatopic EOA had a significantly higher exacerbation rate at 12 months than patients with nonatopic LOA (50% vs. 11.8%, p = 0.012). Identification of different phenotypes of asthma is important in clinical practice because treatment responses may differ.

14.
Micromachines (Basel) ; 12(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670703

RESUMO

The brain is a complex network that accounts for only 5% of human mass but consumes 20% of our energy. Uncovering the mysteries of the brain's functions in motion, memory, learning, behavior, and mental health remains a hot but challenging topic. Neurochemicals in the brain, such as neurotransmitters, neuromodulators, gliotransmitters, hormones, and metabolism substrates and products, play vital roles in mediating and modulating normal brain function, and their abnormal release or imbalanced concentrations can cause various diseases, such as epilepsy, Alzheimer's disease, and Parkinson's disease. A wide range of techniques have been used to probe the concentrations of neurochemicals under normal, stimulated, diseased, and drug-induced conditions in order to understand the neurochemistry of drug mechanisms and develop diagnostic tools or therapies. Recent advancements in detection methods, device fabrication, and new materials have resulted in the development of neurochemical sensors with improved performance. However, direct in vivo measurements require a robust sensor that is highly sensitive and selective with minimal fouling and reduced inflammatory foreign body responses. Here, we review recent advances in neurochemical sensor development for in vivo studies, with a focus on electrochemical and optical probes. Other alternative methods are also compared. We discuss in detail the in vivo challenges for these methods and provide an outlook for future directions.

15.
Front Oncol ; 11: 650122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123798

RESUMO

The common gamma receptor-dependent cytokines and their JAK-STAT pathways play important roles in T cell immunity and have been demonstrated to be related with response to immune checkpoint blockades (ICBs). PTPRD and PTPRT are phosphatases involved in JAK-STAT pathway. However, their clinical significance for non-small cell lung cancer (NSCLC) treated with ICBs is still unclear. Genomic and survival data of NSCLC patients administrated with anti-PD-1/PD-L1 or anti-CTLA-4 antibodies (Rizvi2015; Hellmann2018; Rizvi2018 Samstein2019) were retrieved from publicly accessible data. Genomic, survival and mRNA data of 1007 patients with NSCLC were obtained from The Cancer Genome Atlas (TCGA). PTPRD/PTPRT mutation was significantly associated with better progression-free survival (PFS) in three independent Rizvi2015, Hellmann2018 and Rizvi2018 cohorts. The median PFS for PTPRD/PTPRT mutant-type vs. wild-type NSCLC patients were not reached vs. 6.3 months (Rizvi2015, HR = 0.16; 95% CI, 0.02-1.17; P=0.03), 24.0 vs. 5.4 months (Hellmann2018, HR, 0.49; 95% CI, 0.26-0.94; P=0.03), 5.6 vs. 3.0 months (Rizvi2018, HR = 0.64; 95% CI, 0.44-0.92; P=0.01) and 6.8 vs. 3.5 months (Pooled cohort, HR, 0.54; 95% CI, 0.39-0.73; P<0.0001) respectively. PTPRD/PTPRT mutation was an independent predictive factor for PFS in pooled cohort (P = 0.01). Additionally, PTPRD/PTPRT mutation associated with better overall survival (OS) in Samstein2019 cohort (19 vs. 10 months, P=0.03). While similar clinical benefits were not observed in patients without ICBs treatment (TCGA cohort, P=0.78). In the further exploratory analysis, PTPRD/PTPRT mutation was significantly associated with increased tumor mutation burden and higher mRNA expression of JAK1 and STAT1. Gene Set Enrichment Analysis revealed prominent enrichment of signatures related to antigen processing and presentation in patients with PTPRD/PTPRT mutation. This work suggested that PTPRD/PTPRT mutation might be a potential positive predictor for ICBs in NSCLC. These results need to be further confirmed in future.

16.
Adv Biosyst ; 4(6): e1900287, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32363792

RESUMO

For brain computer interfaces (BCI), the immune response to implanted electrodes is a major biological cause of device failure. Bioactive coatings such as neural adhesion molecule L1 have been shown to improve the biocompatibility, but are difficult to handle or produce in batches. Here, a synthetic zwitterionic polymer coating, poly(sulfobetaine methacrylate) (PSBMA) is developed for neural implants with the goal of reducing the inflammatory host response. In tests in vitro, the zwitterionic coating inhibits protein adsorption and the attachment of fibroblasts and microglia, and remains stable for at least 4 weeks. In vivo two-photon microscopy on CX3CR1-GFP mice shows that the zwitterionic coating significantly suppresses the microglial encapsulation of neural microelectrodes over a 6 h observation period. Furthermore, the lower microglial encapsulation on zwitterionic polymer-coated microelectrodes is revealed to originate from a reduction in the size but not the number of microglial end feet. This work provides a facile method for coating neural implants with zwitterionic polymers and illustrates the initial interaction between microglia and coated surface at high temporal and spatial resolution.


Assuntos
Materiais Revestidos Biocompatíveis , Metacrilatos , Microglia/metabolismo , Próteses Neurais , Células 3T3 , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Metacrilatos/química , Metacrilatos/farmacologia , Camundongos , Camundongos Transgênicos , Microeletrodos
17.
Biomaterials ; 225: 119519, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31600673

RESUMO

The inflammatory brain tissue response to implanted neural electrode devices has hindered the longevity of these implants. Zwitterionic polymers have a potent anti-fouling effect that decreases the foreign body response to subcutaneous implants. In this study, we developed a nanoscale anti-fouling coating composed of zwitterionic poly (sulfobetaine methacrylate) (PSB) and polydopamine (PDA) for neural probes. The addition of PDA improved the stability of the coating compared to PSB alone, without compromising the anti-fouling properties of the film. PDA-PSB coating reduced protein adsorption by 89% compared to bare Si samples, while fibroblast adhesion was reduced by 86%. PDA-PSB coated silicon based neural probes were implanted into mouse brain, and the inflammatory tissue responses to the implants were assessed by immunohistochemistry one week after implantation. The PSB-PDA coated implants showed a significantly decreased expression of glial fibrillary acidic protein (GFAP), a marker for reactive astrocytes, within 70 µm from the electrode-tissue interface (p < 0.05). Additionally, the coating reduced the microglia activation as shown in decreased Iba-1 and lectin staining, and improved blood-brain barrier integrity indicated by reduced immunoglobulin (IgG) leakage into the tissue around the probes. These findings demonstrate that anti-fouling zwitterionic coating is effective in suppressing the acute inflammatory brain tissue response to implants, and should be further investigated for its potential to improve chronic performance of neural implants.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Indóis/farmacologia , Inflamação/patologia , Próteses Neurais , Polímeros/farmacologia , Adsorção , Animais , Adesão Celular/efeitos dos fármacos , Masculino , Metacrilatos/química , Camundongos Endogâmicos C57BL , Propriedades de Superfície
18.
Front Chem ; 7: 178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984745

RESUMO

In the pursuit of conducting polymer based bio-functional devices, a cost-effective and high yield synthesis method for a versatile monomer is desired. We report here a new synthesis strategy for a versatile monomer 2-methylene-2,3-dihydrothieno (3,4-b) (1,4) dioxine, or 3,4-ethylenedioxythiophene with a exomethylene side group (EDOT-EM). Compared to the previously reported synthesis route, the new strategy uses less steps, with faster reaction rate, and higher yield. The presence of EM group opens up endless possibility for derivatization via either hydro-alkoxy addition or thiol-ene click chemistry. EDOT-EM could be polymerized into stable and low impedance PEDOT-EM polymer using electro-polymerization method on different conducting substrates at both macro and micro scales. Facile post-functionalization of PEDOT-EM with molecules of varying size and functionality (from small molecules to DNAs and proteins) was achieved. The new synthetic route of EDOT-EM and the ease of post-functionalization of PEDOT-EM will greatly accelerate the use of conducting polymer in a broad range of organic electronics and bioelectronics applications.

19.
Biomaterials ; 180: 225-239, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30053658

RESUMO

The chronic performance of implantable neural electrodes is hindered by inflammatory brain tissue responses, including microglia activation, glial scarring, and neuronal loss. Melatonin (MT) has shown remarkable neuroprotective and neurorestorative effects in treating central nervous system (CNS) injuries and degeneration by inhibiting caspase-1, -3, and -9 activation and mitochondrial cytochrome c release, as well as reducing oxidative stress and neuroinflammation. This study examined the effect of MT administration on the quality and longevity of neural recording from an implanted microelectrode in the visual cortex of mice for 16 weeks. MT (30 mg/kg) was administered via daily intraperitoneal injection for acute (3 days before and 14 days post-implantation) and chronic (3 days before and 16 weeks post-implantation) exposures. During the first 4 weeks, both MT groups showed significantly higher single-unit (SU) yield, signal-to-noise ratio (SNR), and amplitude compared to the vehicle control group. However, after 4 weeks of implantation, the SU yield of the acute treatment group dropped to the same level as the control group, while the chronic treatment group maintained significantly higher SU yield compared to both acute (week 5-16) and control (week 0-16) mice. Histological studies revealed a significant increase in neuronal viability and decrease in neuronal apoptosis around the implanted electrode at week 16 in the chronic group in comparison to control and acute subjects, which is correlated with reduced oxidative stress and increased number of pro-regeneration arginase-1 positive microglia cells. These results demonstrate the potent effect of MT treatment in maintaining a high-quality electrode-tissue interface and suggest that MT promotes neuroprotection possibly through its anti-apoptotic, anti-inflammatory, and anti-oxidative properties.


Assuntos
Gliose/metabolismo , Melatonina/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Gliose/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Melatonina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA