Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Biosci ; 12(1): 162, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180897

RESUMO

BACKGROUND: Immune checkpoints are a set of costimulatory and inhibitory molecules that maintain self-tolerance and regulate immune homeostasis. The expression of immune checkpoints on T cells in malignancy, chronic inflammation, and neurodegenerative diseases has gained increasing attention. RESULTS: To characterize immune checkpoints in neurodegenerative diseases, we aimed to examine the expression of the immune checkpoint PD-1/PD-L1 in peripheral T cells in different Alzheimer's disease (AD) patients. To achieve this aim, sixteen AD patients and sixteen age-matched healthy volunteers were enrolled to analyze their CD3+ T cells, CD3+CD56+ (neural cell adhesion molecule, NCAM) T cells, CD4+/CD8+ T cells, and CD4+/CD8+CD25+ (interleukin-2 receptor alpha, IL-2RA) T cells in this study. The expression of PD-1 on T cells was similar between the AD patients and healthy volunteers, but increased expression of PD-L1 on CD3+CD56+ T cells (natural killer T cells, NKT-like), CD4+ T cells (helper T cells, Th), CD4+CD25+ T cells, and CD8+ T cells (cytotoxic T lymphocytes, CTL) was detected in the AD patients. In addition, we found negative correlations between the AD patients' cognitive performance and both CD8+ T cells and CD8+CD25+ T cells. To identify CD8+ T-cell phenotypic and functional characteristic differences between the healthy volunteers and AD patients in different stages, a machine learning algorithm, t-distributed stochastic neighbor embedding (t-SNE), was implemented. Using t-SNE enabled the above high-dimensional data to be visualized and better analyzed. The t-SNE analysis demonstrated that the cellular sizes and densities of PD-1/PD-L1 on CD8+ T cells differed among the healthy, mild AD, and moderate AD subjects. CONCLUSIONS: Our results suggest that changes in PD-1/PD-L1-expressing T cells in AD patients' peripheral blood could be a potential biomarker for monitoring disease and shed light on the AD disease mechanism. Moreover, these findings indicate that PD-1/PD-L1 blockade treatment could be a novel choice to slow AD disease deterioration.

2.
Cancers (Basel) ; 11(9)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480804

RESUMO

The unsatisfactory real-world efficacy of the hypomethylating agent azacitidine in treating myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) has prompted us to investigate the hematological adverse events and host variables that may compromise the use of this epigenetic drug. Using the zebrafish, we found that azacitidine destroyed their myeloid precursors and impaired myeloid function by inhibiting antigen processing, allogeneic response and phagocytic activity, resulting in increased susceptibility to infection even by the normal flora E. coli. In addition, iron overload, a MDS-associated condition following repeated transfusions, exacerbated bacterial infection especially by V. vulnificus with known iron dependence. Furthermore, we show that the tp53M214K mutant zebrafish survived longer than the wild-type (WT) when challenged with bacteria following azacitidine treatment. This was attributed to the mutant's hematopoietic cells rather than its general genetic background, since the WT animals reconstituted with the tp53M214K mutant kidney marrow became more resistant to bacterial infection following treatment with azacitidine. The clinical relevance of our findings was indicated by a MDS case with severe azacitidine-induced bone marrow suppression and by the association of hyperferritinemia with bacteremia in azacitidine-treated patients, while tp53M214K-mediated resistance to azacitidine-induced myelosuppression may explain the survival advantage of malignant MDS and AML clones over their normal counterparts under azacitidine treatment. Together, we propose that myelosuppression, iron overload and TP53 mutations may represent the host variables that compromise the azacitidine efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA