Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5080, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429521

RESUMO

The polycyclic aromatic hydrocarbon (PAH) concentrations in total suspended particulate matter (TSP) samples collected from October, 2021 to September, 2022 were analyzed to clarify the pollution characteristics and sources of 16 PAHs in the atmospheric TSP in Bengbu City. The ρ(PAHs) concentrations ranged from 1.71 to 43.85 ng/m3 and higher concentrations were detected in winter, followed by spring, autumn, and summer. The positive matrix factorization analysis revealed that, in spring and summer, PAH pollution was caused mainly by industrial emissions, gasoline and diesel fuel combustion, whereas in autumn and winter, it was coal, biomass and natural gas combustion. The cluster and potential source factor analyses showed that long-range transport was a significant factor. During spring, autumn, and winter, the northern and northwestern regions had a significant impact, whereas the coastal area south of Bengbu had the greatest influence in summer. The health risk assessment revealed that the annual total carcinogenic equivalent concentration values for PAHs varied from 0.0159 to 7.437 ng/m3, which was classified as moderate. Furthermore, the annual incremental lifetime cancer risk values ranged from 1.431 × 10-4 to 3.671 × 10-3 for adults and from 6.823 × 10-5 to 1.749 × 10-3 for children, which were higher than the standard.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental , Medição de Risco , Gasolina , China
2.
Front Public Health ; 12: 1371656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651126

RESUMO

Given the dense population on university campuses, indoor and outdoor airborne bacterial contamination may lead to the rapid spread of diseases in a university environment. However, there are few studies of the characteristics of airborne and pathogenic bacterial communities in different sites on a university campus. In this study, we collected particulate matter samples from indoor and outdoor locations at a university in Bengbu City, Anhui Province, China, and analyzed the community characteristics of airborne and pathogenic bacteria using a high-throughput sequencing technique. The results showed that the composition of the dominant airborne and pathogenic bacterial communities was consistent among sites at the phylum and genus levels, with differences in their relative abundance. There were significant differences in the structure of the airborne and pathogenic bacterial communities between indoor and outdoor sites (p < 0.05). An analysis of similarities (ANOSIM) indicated that the structure of airborne bacterial communities in indoor sites was influenced by the room occupancy rate, ventilation conditions, and the extent of indoor furnishing (p < 0.05), while the structure of pathogenic bacterial communities was influenced by the number of individuals and spatial dimensions (p < 0.05). The impact of particle size on the structure of airborne and pathogenic bacterial communities was relatively minor. A total of 194 suspected pathogenic bacterial species were identified, accounting for 0.0001-1.3923% of the total airborne bacteria, all of which were conditional pathogens. Among them, Saccharopolyspora rectivirgula, Acinetobacter johnsonii, and Moraxella osloensis exhibited relatively high relative abundance, accounting for 24.40, 16.22, and 8.66% of the total pathogenic bacteria, respectively. Moreover, 18 emerging or re-emerging pathogenic bacterial species with significant implications for human health were identified, although their relative abundance was relatively low (0.5098%). The relative abundance of pathogenic bacteria in indoor environments was significantly higher than outdoors, with the laboratory and dormitory having the highest levels. The findings of this study provide valuable guidance for the prevention and control of airborne bacterial contamination and the associated health risks in both a campus environment and other public spaces with high occupancy rates.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Bactérias , Tamanho da Partícula , Material Particulado , Universidades , China , Bactérias/isolamento & purificação , Bactérias/classificação , Humanos , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Monitoramento Ambiental
3.
Hypertension ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162036

RESUMO

BACKGROUND: Drp1 (dynamin-related protein 1), a large GTPase, mediates the increased mitochondrial fission, which contributes to hyperproliferation of pulmonary artery smooth muscle cells in pulmonary arterial hypertension (PAH). We developed a potent Drp1 GTPase inhibitor, Drpitor1a, but its specificity, pharmacokinetics, and efficacy in PAH are unknown. METHODS: Drpitor1a's ability to inhibit recombinant and endogenous Drp1-GTPase was assessed. Drpitor1a's effects on fission were studied in control and PAH human pulmonary artery smooth muscle cells (hPASMC) and blood outgrowth endothelial cells (BOEC). Cell proliferation and apoptosis were studied in hPASMC. Pharmacokinetics and tissue concentrations were measured following intravenous and oral drug administration. Drpitor1a's efficacy in regressing monocrotaline-PAH was assessed in rats. In a pilot study, Drpitor1a reduced PA remodeling only in females. Subsequently, we compared Drpitor1a to vehicles in normal and monocrotaline-PAH females. RESULTS: Drp1 GTPase activity was increased in PAH hPASMC. Drpitor1a inhibited the GTPase activity of recombinant and endogenous Drp1 and reversed the increased fission, seen in PAH hPASMC and PAH BOEC. Drpitor1a inhibited proliferation and induced apoptosis in PAH hPASMC without affecting electron transport chain activity, respiration, fission/fusion mediator expression, or mitochondrial Drp1 translocation. Drpitor1a did not inhibit proliferation or alter mitochondrial dynamics in normal hPASMC. Drpitor1a regressed monocrotaline-PAH without systemic vascular effects or toxicity. CONCLUSIONS: Drpitor1a is a specific Drp1-GTPase inhibitor that reduces mitochondrial fission in PAH hPASMC and PAH BOEC. Drpitor1a reduces proliferation and induces apoptosis in PAH-hPASMC and regresses monocrotaline-PAH. Drp1 is a therapeutic target in PAH, and Drpitor1a is a potential therapy with an interesting therapeutic sexual dimorphism.

4.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187628

RESUMO

Rationale: Dynamin-related protein 1 (Drp1), a large GTPase, mediates mitochondrial fission. Increased Drp1-mediated fission permits accelerated mitosis, contributing to hyperproliferation of pulmonary artery smooth muscle cells (PASMC), which characterizes pulmonary arterial hypertension (PAH). We developed a Drp1 inhibitor, Drpitor1a, and tested its ability to regress PAH. Objectives: Assess Drpitor1a's efficacy and toxicity in: a)normal and PAH human PASMC (hPASMC); b)normal rats versus rats with established monocrotaline (MCT)-induced PAH. Methods: Drpitor1a's effects on recombinant and endogenous Drp1-GTPase activity, mitochondrial fission, and cell proliferation were studied in hPASMCs (normal=3; PAH=5). Drpitor1a's pharmacokinetics and tissue concentrations were measured (n=3 rats/sex). In a pilot study (n=3-4/sex/dose), Drpitor1a (1mg/kg/48-hours, intravenous) reduced adverse PA remodeling only in females. Consequently, we compared Drpitor1a to vehicle in normal (n=6 versus 8) and MCT-PAH (n=9 and 11) females, respectively. Drpitor1a treatment began 17-days post-MCT with echocardiography and cardiac catheterization performed 28-29 days post-MCT. Results: Drpitor1a inhibited recombinant and endogenous Drp1 GTPase activity, which was increased in PAH hPASMC. Drpitor1a inhibited mitochondrial fission and proliferation and induced apoptosis, in PAH hPASMC but not normal hPASMC. Drpitor1a tissue levels were higher in female versus male RVs. In MCT-PAH females, Drpitor1a regressed PA obstruction, lowered pulmonary vascular resistance, and improved RV function, without hematologic, renal, or hepatic toxicity. Conclusions: Drpitor1a inhibits Drp1 GTPase, reduces mitochondrial fission, and inhibits cell proliferation in PAH hPASMC. Drpitor1a caused no toxicity in MCT-PAH and had no significant effect on normal rats or hPASMCs. Drpitor1a is a potential PAH therapeutic which displays an interesting therapeutic sexual dimorphism.

5.
medRxiv ; 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38234783

RESUMO

Background: Mutations are found in 10-20% of idiopathic PAH (IPAH) patients, but none are consistently identified in connective tissue disease-associated PAH (APAH), which accounts for ∼45% of PAH cases. TET2 mutations, a cause of clonal hematopoiesis of indeterminant potential (CHIP), predispose to an inflammatory type of PAH. We now examine mutations in another CHIP gene, DNMT3A , in PAH. Methods: We assessed DNMT3A mutation prevalence in PAH Biobank subjects as compared with controls, first using whole exome sequencing (WES)-derived CHIP calls in 1832 PAH Biobank patients versus 7509 age-and sex-matched gnomAD controls. We then performed deep, targeted panel sequencing of CHIP genes on a subset of 710 PAH Biobank patients and compared the prevalence of DNMT3A mutations therein to an independent pooled control cohort (N = 3645). In another cohort of 80 PAH patients and 41 controls, DNMT3A mRNA expression was studied in peripheral blood mononuclear cells (PBMCs). Finally, we evaluated the development of PAH in a conditional, hematopoietic, Dnmt3a knockout mouse model. Results: DNMT3A mutations were more frequent in PAH cases versus control subjects in the WES dataset (OR 2.60, 95% CI: 1.71-4.27). Among PAH patients, 33 had DNMT3A variants, most of whom had APAH (21/33). While 21/33 had somatic mutations (female:male 17:4), germline variants occurred in 12/33 (female:male 11:1). Hemodynamics were comparable with and without DNMT3A mutations (mPAP=58±21 vs. 52±18 mmHg); however, patients with DNMT3A mutations were unresponsive to acute vasodilator testing. Targeted panel sequencing identified that 14.6% of PAH patients had CHIP mutations (104/710), with DNMT3A accounting for 49/104. There was a significant association between all CHIP mutations and PAH in analyses adjusted for age and sex (OR 1.40, 95% CI: 1.09-1.80), though DNMT3A CHIP alone was not significantly enriched (OR:1.15, 0.82-1.61). DNMT3A expression was reduced in patient-derived versus control PAH-PBMCs. Spontaneous PAH developed in Dnmt3a -/- mice, and it was exacerbated by 3 weeks of hypoxia. Dnmt3a -/- mice had increased lung macrophages and elevated plasma IL-13. The IL-1ß antibody canakinumab attenuated PAH in Dnmt3a -/- mice. Conclusions: Germline and acquired DNMT3A variants predispose to PAH in humans. DNMT3A mRNA expression is reduced in human PAH PBMCs. Hematopoietic depletion of Dnmt3a causes inflammatory PAH in mice. DNMT3A is a novel APAH gene and may be a biomarker and therapeutic target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA