Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(36)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34479998

RESUMO

Quantum error correction is an essential tool for reliably performing tasks for processing quantum information on a large scale. However, integration into quantum circuits to achieve these tasks is problematic when one realizes that nontransverse operations, which are essential for universal quantum computation, lead to the spread of errors. Quantum gate teleportation has been proposed as an elegant solution for this. Here, one replaces these fragile, nontransverse inline gates with the generation of specific, highly entangled offline resource states that can be teleported into the circuit to implement the nontransverse gate. As the first important step, we create a maximally entangled state between a physical and an error-correctable logical qubit and use it as a teleportation resource. We then demonstrate the teleportation of quantum information encoded on the physical qubit into the error-corrected logical qubit with fidelities up to 0.786. Our scheme can be designed to be fully fault tolerant so that it can be used in future large-scale quantum technologies.

2.
Phys Rev Lett ; 130(19): 190201, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243635

RESUMO

Nonlocality arising in networks composed of several independent sources gives rise to phenomena radically different from that in standard Bell scenarios. Over the years, the phenomenon of network nonlocality in the entanglement-swapping scenario has been well investigated and demonstrated. However, it is known that violations of the so-called bilocality inequality used in previous experimental demonstrations cannot be used to certify the nonclassicality of their sources. This has put forward a stronger concept for nonlocality in networks, called full network nonlocality. Here, we experimentally observe full network nonlocal correlations in a network where the source-independence, locality, and measurement-independence loopholes are closed. This is ensured by employing two independent sources, rapid setting generation, and spacelike separations of relevant events. Our experiment violates known inequalities characterizing nonfull network nonlocal correlations by over 5 standard deviations, certifying the absence of classical sources in the realization.

3.
Phys Rev Lett ; 130(7): 070801, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36867807

RESUMO

Quantum metrology employs quantum resources to enhance the measurement sensitivity beyond that can be achieved classically. While multiphoton entangled N00N states can in principle beat the shot-noise limit and reach the Heisenberg limit, high N00N states are difficult to prepare and fragile to photon loss which hinders them from reaching unconditional quantum metrological advantages. Here, we combine the idea of unconventional nonlinear interferometers and stimulated emission of squeezed light, previously developed for the photonic quantum computer Jiuzhang, to propose and realize a new scheme that achieves a scalable, unconditional, and robust quantum metrological advantage. We observe a 5.8(1)-fold enhancement above the shot-noise limit in the Fisher information extracted per photon, without discounting for photon loss and imperfections, which outperforms ideal 5-N00N states. The Heisenberg-limited scaling, the robustness to external photon loss, and the ease-of-use of our method make it applicable in practical quantum metrology at a low photon flux regime.

4.
Small ; 18(52): e2205037, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36336630

RESUMO

Reducing nanoparticle (NP) dosage for hyperthermia therapy has remained a great challenge. In this work, efficiencies of alternating current (AC) magnetic field and near-infrared (NIR) heating are simultaneously enhanced by Zn and Co co-doping of magnetite NPs. The optimum magnetic anisotropy for maximized loss power under each magnetic field is achieved by tuning the doping concentration. The specific loss power of Zn0.3 Co0.08 Fe2.62 O4 @SiO2 NPs reaches 2428 W g-1 under an AC field of 27 kA m-1 at 430 kHz; 12 296 W g-1 under NIR laser irradiation at 808 nm and 2.5 W cm-2 ; and an unprecedented value of 14 724 W g-1 under dual mode. These values far exceed what has been achieved previously in iron oxide NPs. Ex vivo experiments on sacrificial mice show that while the NP dosage is substantially reduced to that used for magnetic resonance imaging, the surface body temperature of the mice reaches 50 °C after exposure to both AC field and laser irradiation under field parameters and laser intensity below safety limits. This nanoplatform is thus promising for multi-modal local hyperthermia therapy.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Camundongos , Animais , Dióxido de Silício , Hipertermia Induzida/métodos , Zinco
5.
Small ; 18(3): e2104626, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862842

RESUMO

Demonstrating highly efficient alternating current (AC) magnetic field heating of nanoparticles in physiological environments under clinically safe field parameters has remained a great challenge, hindering clinical applications of magnetic hyperthermia. In this work, exceptionally high loss power of magnetic bone cement under the clinical safety limit of AC field parameters, incorporating direct current field-aligned soft magnetic Zn0.3 Fe2.7 O4 nanoparticles with low concentration, is reported. Under an AC field of 4 kA m-1 at 430 kHz, the aligned bone cement with 0.2 wt% nanoparticles achieves a temperature increase of 30 °C in 180 s. This amounts to a specific loss power value of 327 W gmetal-1 and an intrinsic loss power of 47 nHm2 kg-1 , which is enhanced by 50-fold compared to randomly oriented samples. The high-performance magnetic bone cement allows for the demonstration of effective hyperthermia suppression of tumor growth in the bone marrow cavity of New Zealand White Rabbits subjected to rapid cooling due to blood circulation, and significant enhancement of survival rate.


Assuntos
Neoplasias Ósseas , Hipertermia Induzida , Nanopartículas , Animais , Cimentos Ósseos , Campos Magnéticos , Coelhos
6.
Phys Rev Lett ; 129(6): 060401, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36018640

RESUMO

Nonlocality captures one of the counterintuitive features of nature that defies classical intuition. Recent investigations reveal that our physical world's nonlocality is at least tripartite; i.e., genuinely tripartite nonlocal correlations in nature cannot be reproduced by any causal theory involving bipartite nonclassical resources and unlimited shared randomness. Here, by allowing the fair sampling assumption and postselection, we experimentally demonstrate such genuine tripartite nonlocality in a network under strict locality constraints that are ensured by spacelike separating all relevant events and employing fast quantum random number generators and high-speed polarization measurements. In particular, for a photonic quantum triangular network we observe a locality-loophole-free violation of the Bell-type inequality by 7.57 standard deviations for a postselected tripartite Greenberger-Horne-Zeilinger state of fidelity (93.13±0.24)%, which convincingly disproves the possibility of simulating genuine tripartite nonlocality by bipartite nonlocal resources with globally shared randomness.

7.
Phys Rev Lett ; 128(25): 250401, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35802432

RESUMO

First proposed by Mayers and Yao, self-testing provides a certification method to infer the underlying physics of quantum experiments in a black-box scenario. Numerous demonstrations have been reported to self-test various types of entangled states. However, all the multiparticle self-testing experiments reported so far suffer from both detection and locality loopholes. Here, we report the first experimental realization of multiparticle entanglement self-testing closing the locality loophole in a photonic system, and the detection loophole in a superconducting system, respectively. We certify three-party and four-party GHZ states with at least 0.84(1) and 0.86(3) fidelities in a device-independent way. These results can be viewed as a meaningful advance in multiparticle loophole-free self-testing, and also significant progress on the foundations of quantum entanglement certification.

8.
Phys Rev Lett ; 129(14): 140401, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240393

RESUMO

Quantum mechanics is commonly formulated in a complex, rather than real, Hilbert space. However, whether quantum theory really needs the participation of complex numbers has been debated ever since its birth. Recently, a Bell-like test in an entanglement-swapping scenario has been proposed to distinguish standard quantum mechanics from its real-valued analog. Previous experiments have conceptually demonstrated, yet not satisfied, the central requirement of independent state preparation and measurements and leave several loopholes. Here, we implement such a Bell-like test with two separated independent sources delivering entangled photons to three separated parties under strict locality conditions that are enforced by spacelike separation of the relevant events, rapid random setting generation, and fast measurement. With the fair-sampling assumption and closed loopholes of independent source, locality, and measurement independence simultaneously, we violate the constraints of real-valued quantum mechanics by 5.30 standard deviations. Our results disprove the real-valued quantum theory to describe nature and ensure the indispensable role of complex numbers in quantum mechanics.

9.
Phys Rev Lett ; 127(3): 030402, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34328769

RESUMO

We propose a new method to directly measure a general multiparticle quantum wave function, a single matrix element in a multi-particle density matrix, by quantum teleportation. The density matrix element is embedded in a virtual logical qubit and is nondestructively teleported to a single physical qubit for readout. We experimentally implement this method to directly measure the wave function of a photonic mixed quantum state beyond a single photon using a single observable for the first time. Our method also provides an exponential advantage over the standard quantum state tomography in measurement complexity to fully characterize a sparse multiparticle quantum state.

10.
Phys Rev Lett ; 126(14): 140501, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891463

RESUMO

Heralded entangling quantum gates are an essential element for the implementation of large-scale optical quantum computation. Yet, the experimental demonstration of genuine heralded entangling gates with free-flying output photons in linear optical system, was hindered by the intrinsically probabilistic source and double-pair emission in parametric down-conversion. Here, by using an on-demand single-photon source based on a semiconductor quantum dot embedded in a micropillar cavity, we demonstrate a heralded controlled-NOT (CNOT) operation between two single photons for the first time. To characterize the performance of the CNOT gate, we estimate its average quantum gate fidelity of (87.8±1.2)%. As an application, we generated event-ready Bell states with a fidelity of (83.4±2.4)%. Our results are an important step towards the development of photon-photon quantum logic gates.

11.
Phys Rev Lett ; 127(23): 230503, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936806

RESUMO

Quantum self-testing is a device-independent way to certify quantum states and measurements using only the input-output statistics, with minimal assumptions about the quantum devices. Because of the high demand on tolerable noise, however, experimental self-testing was limited to two-photon systems. Here, we demonstrate the first robust self-testing for multiphoton genuinely entangled quantum states. We prepare two examples of four-photon graph states, the Greenberger-Horne-Zeilinger states with a fidelity of 0.957(2) and the linear cluster states with a fidelity of 0.945(2). Based on the observed input-output statistics, we certify the genuine four-photon entanglement and further estimate their qualities with respect to realistic noise in a device-independent manner.

12.
Phys Rev Lett ; 127(18): 180502, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767431

RESUMO

We report phase-programmable Gaussian boson sampling (GBS) which produces up to 113 photon detection events out of a 144-mode photonic circuit. A new high-brightness and scalable quantum light source is developed, exploring the idea of stimulated emission of squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states. The obtained samples are efficiently validated by inferring from computationally friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We show that our GBS experiment passes a nonclassicality test based on inequality constraints, and we reveal nontrivial genuine high-order correlations in the GBS samples, which are evidence of robustness against possible classical simulation schemes. This photonic quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to ∼10^{43}, and a sampling rate ∼10^{24} faster than using brute-force simulation on classical supercomputers.

13.
Nature ; 518(7540): 516-9, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25719668

RESUMO

Quantum teleportation provides a 'disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.

14.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(1): 103-110, 2021 Jan.
Artigo em Zh | MEDLINE | ID: mdl-33476546

RESUMO

OBJECTIVE: To study the role of vascular endothelial growth factor-A (VEGF-A) in pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension (HPH) by regulating survivin (SVV). METHODS: A total of 96 neonatal rats were randomly divided into three groups: HPH+VEGF-A group, HPH group, and control group. Each group was further randomly divided into 3-, 7-, 10-, and 14-day subgroups (n=8 in each subgroup). The neonatal rats in the HPH+VEGF-A and HPH groups were intratracheally transfected with adenoviral vectors with or without VEGF-A gene respectively. Those in the control group were given intratracheal injection of normal saline and were then fed under normoxic conditions. The direct measurement method was used to measure mean right ventricular systolic pressure (RVSP). Hematoxylin-eosin staining was used to observe the morphological changes of pulmonary vessels under a light microscope and calculate the percentage of media wall thickness (MT%) and the percentage of media wall cross-sectional area (MA%) in the pulmonary arterioles. Immunohistochemistry was used to measure the expression levels of VEGF-A and SVV in lung tissue. RESULTS: The HPH group had a significantly higher mean RVSP than the control and HPH+VEGF-A groups at each time point (P < 0.05). Pulmonary vascular remodeling occurred in the HPH group on day 7 of hypoxia, while it occurred in the HPH+VEGF-A group on day 10 of hypoxia. On day 7 of hypoxia, the HPH group had significantly higher MT% and MA% than the control and HPH+VEGF-A groups (P < 0.05). On days 10 and 14 of hypoxia, the HPH and HPH+VEGF-A groups had significantly higher MT% and MA% than the control group (P < 0.05). The HPH and HPH+VEGF-A groups had significantly higher expression of VEGF-A than the control group at each time point (P < 0.05). On days 3 and 7 of hypoxia, the HPH+VEGF-A group had significantly higher expression of VEGF-A than the HPH group (P < 0.05). On day 14 of hypoxia, the HPH group had significantly higher expression of SVV than the control group (P < 0.05). The HPH+VEGF-A group had significantly higher expression of SVV than the control group at each time point (P < 0.05). On days 3 and 7 of hypoxia, the HPH+VEGF-A group had significantly higher expression of SVV than the HPH group (P < 0.05). CONCLUSIONS: Prophylactic intratracheal administration of exogenous VEGF-A in neonatal rats with HPH can inhibit pulmonary vascular remodeling and reduce pulmonary arterial pressure by upregulating the expression of SVV in the early stage of hypoxia. This provides a basis for the interventional treatment of pulmonary vascular remodeling in neonatal HPH.


Assuntos
Hipertensão Pulmonar , Animais , Animais Recém-Nascidos , Hipertensão Pulmonar/etiologia , Hipóxia , Artéria Pulmonar , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular , Remodelação Vascular
15.
Phys Rev Lett ; 125(21): 210502, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274970

RESUMO

Quantum no-cloning, the impossibility of perfectly cloning an arbitrary unknown quantum state, is one of the most fundamental limitations due to the laws of quantum mechanics, which underpin the physical security of quantum key distribution. Quantum physics does allow, however, approximate cloning with either imperfect state fidelity and/or probabilistic success. Whereas approximate quantum cloning of single-particle states has been tested previously, experimental cloning of quantum entanglement-a highly nonclassical correlation-remained unexplored. Based on a multiphoton linear optics platform, we demonstrate quantum cloning of two-photon entangled states for the first time. Remarkably our results show that one maximally entangled photon pair can be broadcast into two entangled pairs, both with state fidelities above 50%. Our results are a key step towards cloning of complex quantum systems, and are likely to provide new insights into quantum entanglement.

16.
Phys Rev Lett ; 122(8): 080602, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932595

RESUMO

We propose a general framework for solving statistical mechanics of systems with finite size. The approach extends the celebrated variational mean-field approaches using autoregressive neural networks, which support direct sampling and exact calculation of normalized probability of configurations. It computes variational free energy, estimates physical quantities such as entropy, magnetizations and correlations, and generates uncorrelated samples all at once. Training of the network employs the policy gradient approach in reinforcement learning, which unbiasedly estimates the gradient of variational parameters. We apply our approach to several classic systems, including 2D Ising models, the Hopfield model, the Sherrington-Kirkpatrick model, and the inverse Ising model, for demonstrating its advantages over existing variational mean-field methods. Our approach sheds light on solving statistical physics problems using modern deep generative neural networks.

17.
Med Sci Monit ; 25: 4469-4473, 2019 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-31203307

RESUMO

BACKGROUND This study evaluated the safety and effectiveness of single-site laparoscopic percutaneous extraperitoneal closure of the internal ring using an epidural needle for children with inguinal hernia. MATERIAL AND METHODS We retrospectively analyzed clinical data of 542 children with inguinal hernia who underwent single-site laparoscopic percutaneous extraperitoneal closure of the internal ring using an epidural needle at our hospital from June 2014 to June 2017. RESULTS All patients successfully underwent surgery and none were converted to conventional surgery. Abdominal vascular injury, vasectomy injury, testicular vascular injury, umbilical hernia, iatrogenic cryptorchidism, testicular atrophy, hydrocele, hernia recurrence, and scrotal edema were not reported during the perioperative period. A follow-up of these patients was performed for 12-24 months. During the follow-up period, umbilical hernia, iatrogenic cryptorchidism, testicular atrophy, and hydrocele were not noted, but 3 cases of hernia recurrence were found. CONCLUSIONS The single-site laparoscopic percutaneous extraperitoneal closure of the internal ring using an epidural needle for children with inguinal hernia is safe and effective, and this procedure has the advantages of minimal trauma, no scarring, and good cosmetic effect.


Assuntos
Anestesia Epidural/métodos , Hérnia Inguinal/cirurgia , Laparoscopia/métodos , Criança , Pré-Escolar , Feminino , Humanos , Injeções Epidurais/métodos , Masculino , Agulhas , Duração da Cirurgia , Recidiva , Estudos Retrospectivos , Seringas , Resultado do Tratamento
18.
Phys Rev Lett ; 116(7): 070502, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26943520

RESUMO

The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions.

19.
Nano Lett ; 14(11): 6515-9, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25357153

RESUMO

Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.

20.
Korean J Parasitol ; 52(1): 63-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24623884

RESUMO

This paper describes a new species of chigger mite (ACARI: Trombiculidae), Gahrliepia cangshanensis n. sp., from rodents in southwest China. The specimens were collected from Yunnan red-backed voles, Eothenomys miletus (Thomas, 1914), and a Chinese white-bellied rat, Niviventer confucianus (Milne-Edwards, 1871) in Yunnan Province. The new species is unique mainly in its number of dorsal setae (n=21), and it has the following features: fT (formula of palpotarsus)=4B (B=branched), fp (formula of palpal seta)=B/N/N/N/B (N=naked), a broad tongue-shaped scutum with an almost straight posterior margin, and 17 PPLs (posterior posterolateral seta) with a length of 36-43 µm. This chigger mite may also infect other rodent hosts and may be distributed in other localities.


Assuntos
Arvicolinae/parasitologia , Ectoparasitoses/veterinária , Murinae/parasitologia , Doenças dos Roedores/parasitologia , Roedores/parasitologia , Trombiculidae/classificação , Estruturas Animais/anatomia & histologia , Animais , China , Ectoparasitoses/parasitologia , Microscopia , Trombiculidae/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA