RESUMO
Surviving in a complex and changeable environment relies on the ability to extract probable recurring patterns. Here we report a neurophysiological mechanism for rapid probabilistic learning of a new system of music. Participants listened to different combinations of tones from a previously unheard system of pitches based on the Bohlen-Pierce scale, with chord progressions that form 3:1 ratios in frequency, notably different from 2:1 frequency ratios in existing musical systems. Event-related brain potentials elicited by improbable sounds in the new music system showed emergence over a 1 h period of physiological signatures known to index sound expectation in standard Western music. These indices of expectation learning were eliminated when sound patterns were played equiprobably, and covaried with individual behavioral differences in learning. These results demonstrate that humans use a generalized probability-based perceptual learning mechanism to process novel sound patterns in music.
Assuntos
Potenciais Evocados Auditivos/fisiologia , Generalização Psicológica/fisiologia , Percepção da Altura Sonora/fisiologia , Estimulação Acústica/métodos , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Masculino , Música , Aprendizagem por Probabilidade , Psicoacústica , Tempo de Reação , Adulto JovemRESUMO
Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with mild cognitive impairment (MCI) or AD. We applied high-throughput image analyses procedures to these data to demonstrate the feasibility of detecting subtle structural changes in prodromal AD. Raw DICOM scans (139 NC, 175 MCI, and 84 AD) were downloaded for analysis. Volumetric segmentation and cortical surface reconstruction produced continuous cortical surface maps and region-of-interest (ROI) measures. The MCI cohort was subdivided into single- (SMCI) and multiple-domain MCI (MMCI) based on neuropsychological performance. Repeated measures analyses of covariance were used to examine group and hemispheric effects while controlling for age, sex, and, for volumetric measures, intracranial vault. ROI analyses showed group differences for ventricular, temporal, posterior and rostral anterior cingulate, posterior parietal, and frontal regions. SMCI and NC differed within temporal, rostral posterior cingulate, inferior parietal, precuneus, and caudal midfrontal regions. With MMCI and AD, greater differences were evident in these regions and additional frontal and retrosplenial cortices; evidence for non-AD pathology in MMCI also was suggested. Mesial temporal right-dominant asymmetries were evident and did not interact with diagnosis. Our findings demonstrate that high-throughput methods provide numerous measures to detect subtle effects of prodromal AD, suggesting early and later stages of the preclinical state in this cross-sectional sample. These methods will enable a more complete longitudinal characterization and allow us to identify changes that are predictive of conversion to AD.