Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791140

RESUMO

The tiger nut (Cyperus esculentus L.) is a usable tuber and edible oil plant. The size of the tubers is a key trait that determines the yield and the mechanical harvesting of tiger nut tubers. However, little is known about the anatomical and molecular mechanisms of tuber expansion in tiger nut plants. This study conducted anatomical and comprehensive transcriptomics analyses of tiger nut tubers at the following days after sowing: 40 d (S1); 50 d (S2); 60 d (S3); 70 d (S4); 90 d (S5); and 110 d (S6). The results showed that, at the initiation stage of a tiger nut tuber (S1), the primary thickening meristem (PTM) surrounded the periphery of the stele and was initially responsible for the proliferation of parenchyma cells of the cortex (before S1) and then the stele (S2-S3). The increase in cell size of the parenchyma cells occurred mainly from S1 to S3 in the cortex and from S3 to S4 in the stele. A total of 12,472 differentially expressed genes (DEGs) were expressed to a greater extent in the S1-S3 phase than in S4-S6 phase. DEGs related to tuber expansion were involved in cell wall modification, vesicle transport, cell membrane components, cell division, the regulation of plant hormone levels, signal transduction, and metabolism. DEGs involved in the biosynthesis and the signaling of indole-3-acetic acid (IAA) and jasmonic acid (JA) were expressed highly in S1-S3. The endogenous changes in IAA and JAs during tuber development showed that the highest concentrations were found at S1 and S1-S3, respectively. In addition, several DEGs were related to brassinosteroid (BR) signaling and the G-protein, MAPK, and ubiquitin-proteasome pathways, suggesting that these signaling pathways have roles in the tuber expansion of tiger nut. Finally, we come to the conclusion that the cortex development preceding stele development in tiger nut tubers. The auxin signaling pathway promotes the division of cortical cells, while the jasmonic acid pathway, brassinosteroid signaling, G-protein pathway, MAPK pathway, and ubiquitin protein pathway regulate cell division and the expansion of the tuber cortex and stele. This finding will facilitate searches for genes that influence tuber expansion and the regulatory networks in developing tubers.


Assuntos
Cyperus , Regulação da Expressão Gênica de Plantas , Tubérculos , RNA-Seq , Cyperus/genética , Cyperus/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Tubérculos/crescimento & desenvolvimento , Transcriptoma , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125752

RESUMO

Physic nut (Jatropha curcas L.) has attracted extensive attention because of its fast growth, easy reproduction, tolerance to barren conditions, and high oil content of seeds. SWEET (Sugar Will Eventually be Exported Transporter) family genes contribute to regulating the distribution of carbohydrates in plants and have great potential in improving yield and stress tolerance. In this study, we performed a functional analysis of the homology of these genes from physic nut, JcSWEET12 and JcSWEET17a. Subcellular localization indicated that the JcSWEET12 protein is localized on the plasma membrane and the JcSWEET17a protein on the vacuolar membrane. The overexpression of JcSWEET12 (OE12) and JcSWEET17a (OE17a) in Arabidopsis leads to late and early flowering, respectively, compared to the wild-type plants. The transgenic OE12 seedlings, but not OE17a, exhibit increased salt tolerance. In addition, OE12 plants attain greater plant height and greater shoot dry weight than the wild-type plants at maturity. Together, our results indicate that JcSWEET12 and JcSWEET17a play different roles in the regulation of flowering time and salt stress response, providing a novel genetic resource for future improvement in physic nut and other plants.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Jatropha , Proteínas de Plantas , Plantas Geneticamente Modificadas , Jatropha/genética , Jatropha/metabolismo , Jatropha/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo
3.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982224

RESUMO

Intracellular polyols are used as osmoprotectants by many plants under environmental stress. However, few studies have shown the role of polyol transporters in the tolerance of plants to abiotic stresses. Here, we describe the expression characteristics and potential functions of Lotus japonicus polyol transporter LjPLT3 under salt stress. Using LjPLT3 promoter-reporter gene plants showed that LjPLT3 was expressed in the vascular tissue of L. japonicus leaf, stem, root, and nodule. The expression was also induced by NaCl treatment. Overexpression of LjPLT3 in L. japonicus modified the growth rate and saline tolerance of the transgenic plants. The OELjPLT3 seedlings displayed reduced plant height under both nitrogen-sufficient and symbiotic nitrogen fixation conditions when 4 weeks old. The nodule number of OELjPLT3 plants was reduced by 6.7-27.4% when 4 weeks old. After exposure to a NaCl treatment in Petri dishes for 10 days, OELjPLT3 seedlings had a higher chlorophyll concentration, fresh weight, and survival rate than those in the wild type. For symbiotic nitrogen fixation conditions, the decrease in nitrogenase activity of OELjPLT3 plants was slower than that of the wild type after salt treatment. Compared to the wild type, both the accumulation of small organic molecules and the activity of antioxidant enzymes were higher under salt stress. Considering the concentration of lower reactive oxygen species (ROS) in transgenic lines, we speculate that overexpression of LjPLT3 in L. japonicus might improve the ROS scavenging system to alleviate the oxidative damage caused by salt stress, thereby increasing plant salinity tolerance. Our results will direct the breeding of forage legumes in saline land and also provide an opportunity for the improvement of poor and saline soils.


Assuntos
Lotus , Tolerância ao Sal , Tolerância ao Sal/genética , Lotus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Melhoramento Vegetal , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo , Plântula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Exp Bot ; 73(1): 351-365, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34460912

RESUMO

Polyol transporters have been functionally characterized in yeast and Xenopus laevis oocytes as H+-symporters with broad substrate specificity, but little is known about their physiological roles in planta. To extend this knowledge, we investigated the role of LjPLT11 in Lotus japonicus-Mesorhizobium symbiosis. Functional analyses of LjPLT11 in yeast characterized it as an energy-independent transporter of xylitol, two O-methyl inositols, xylose, and galactose. We showed that LjPLT11 is located on peribacteroid membranes and functions as a facilitative transporter of d-pinitol within infected cells of L. japonicus nodules. Knock-down of LjPLT11 (LjPLT11i) in L. japonicus accelerated plant growth under nitrogen sufficiency, but resulted in abnormal bacteroids with corresponding reductions in nitrogenase activity in nodules and plant growth in the nitrogen-fixing symbiosis. LjPLT11i nodules had higher osmotic pressure in cytosol, and lower osmotic pressure in bacteroids, than wild-type nodules both 3 and 4 weeks after inoculation of Mesorhizobium loti. Levels and distributions of reactive oxygen species were also perturbed in infected cells of 4-week-old nodules in LjPLT11i plants. The results indicate that LjPLT11 plays a key role in adjustment of the levels of its substrate pinitol, and thus maintenance of osmotic balance in infected cells and peribacteroid membrane stability during nodule development.


Assuntos
Lotus , Regulação da Expressão Gênica de Plantas , Inositol/análogos & derivados , Lotus/genética , Lotus/metabolismo , Fixação de Nitrogênio , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose
5.
Bioorg Chem ; 122: 105720, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35305482

RESUMO

The ethyl acetate extract of the stems of Jatropha curcas (ESJ) exerted prominent anti-neuroinflammatory effect through inhibiting microglial overactivation, and reducing mRNA expression of inflammatory factors, including nitric oxide (NO), inducible nitric oxide synthase, and interleukin-1ß in the cortex and the formation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes in C57BL/6 mice. Phytochemical research afforded twenty-three major constituents, including five undescribed components (diterpenes 1-3, 7 and a triterpene 18) and a new natural product [a diterpene, (3S,5S,10R)-3-hydroxy-12-methoxy-13-methylpodopcarpa-8,11,13-trien-7-one (8)], by comprehensive analysis of spectroscopic data. Bioassay showed that ESJ (IC50: 6.49 µg/mL), diterpenes 1, 5, 12, 14, 15, 17, triterpenes 18, 19, preussomerin 22, and lactone 23 (IC50 values from 0.10 to 49.05 µM) inhibited NO production more strongly than the positive control in lipopolysaccharide-stimulated BV-2 cells. HPLC experiment further substantiated that 1, 5, 12, 14-15, 17-19, 22-23 are the characteristic constituents of ESJ, suggesting they might possess the potential for the treatment of neuroinflammation.


Assuntos
Jatropha , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamassomos/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia
6.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628209

RESUMO

The Sugars Will Eventually be Exported Transporters (SWEET) family is a class of sugar transporters that play key roles in phloem loading, seed filling, pollen development and the stress response in plants. Here, a total of 18 JcSWEET genes were identified in physic nut (Jatropha curcas L.) and classified into four clades by phylogenetic analysis. These JcSWEET genes share similar gene structures, and alternative splicing of messenger RNAs was observed for five of the JcSWEET genes. Three (JcSWEET1/4/5) of the JcSWEETs were found to possess transport activity for hexose molecules in yeast. Real-time quantitative PCR analysis of JcSWEETs in different tissues under normal growth conditions and abiotic stresses revealed that most are tissue-specifically expressed, and 12 JcSWEETs responded to either drought or salinity. The JcSWEET16 gene responded to drought and salinity stress in leaves, and the protein it encodes is localized in both the plasma membrane and the vacuolar membrane. The overexpression of JcSWEET16 in Arabidopsis thaliana modified the flowering time and saline tolerance levels but not the drought tolerance of the transgenic plants. Together, these results provide insights into the characteristics of SWEET genes in physic nut and could serve as a basis for cloning and further functional analysis of these genes.


Assuntos
Arabidopsis , Jatropha , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Jatropha/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Açúcares/metabolismo
7.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743304

RESUMO

Arabidopsis AGD2 (Aberrant Growth and Death2) and its close homolog ALD1 (AGD2-like defense response protein 1) have divergent roles in plant defense. We previously reported that modulation of salicylic acid (SA) contents by ALD1 affects numbers of nodules produced by Lotus japonicus, but AGD2's role in leguminous plants remains unclear. A combination of enzymatic analysis and biological characterization of genetic materials was used to study the function of AGD2 (LjAGD2a and LjAGD2b) in L. japonicus. Both LjAGD2a and LjAGD2b could complement dapD and dapE mutants of Escherichia coli and had aminotransferase activity in vitro. ljagd2 plants, with insertional mutations of LjAGD2, had delayed flowering times and reduced seed weights. In contrast, overexpression of LjAGD2a in L. japonicus induced early flowering, with increases in seed and flower sizes, but reductions in pollen fertility and seed setting rates. Additionally, ljagd2a mutation resulted in increased expression of nodulin genes and corresponding increases in infection threads and nodule numbers following inoculation with Rhizobium. Changes in expression of LjAGD2a in L. japonicus also affected endogenous SA contents and hence resistance to pathogens. Our results indicate that LjAGD2a functions as an LL-DAP aminotransferase and plays important roles in plant development. Moreover, LjAGD2a activates defense signaling via the Lys synthesis pathway, thereby participating in legume-microbe interaction.


Assuntos
Arabidopsis , Lotus , Rhizobium , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Lotus/metabolismo , Interações Microbianas , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Ácido Salicílico/metabolismo , Simbiose , Transaminases/metabolismo
8.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216041

RESUMO

The CAPRICE (CPC)-like (CPL) genes belong to a single-repeat R3 MYB family, whose roles in physic nut (Jatropha curcas L.), an important energy plant, remain unclear. In this study, we identified a total of six CPL genes (JcCPL1-6) in physic nut. The JcCPL3, 4, and 6 proteins were localized mainly in the nucleus, while proteins JcCPL1, 2, and 5 were localized in both the nucleus and the cytoplasm. Ectopic overexpression of JcCPL1, 2, and 4 in Arabidopsis thaliana resulted in an increase in root hair number and decrease in trichome number. Consistent with the phenotype of reduced anthocyanin in shoots, the expression levels of anthocyanin biosynthesis genes were down-regulated in the shoots of these three transgenic A. thaliana lines. Moreover, we observed that OeJcCPL1, 2, 4 plants attained earlier leaf senescence, especially at the late developmental stage. Consistent with this, the expression levels of several senescence-associated and photosynthesis-related genes were, respectively, up-regulated and down-regulated in leaves. Taken together, our results indicate functional divergence of the six CPL proteins in physic nut. These findings also provide insight into the underlying roles of CPL transcription factors in leaf senescence.


Assuntos
Antocianinas/biossíntese , Antocianinas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Diferenciação Celular/genética , Expressão Ectópica do Gene/genética , Senescência Vegetal/genética , Regulação da Expressão Gênica de Plantas/genética , Jatropha/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Tricomas/genética
9.
J Exp Bot ; 71(1): 168-177, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31559427

RESUMO

LAZY1 family genes play important roles in both shoot and root gravitropism in plants. Here we report a Lotus japonicus mutant that displays negative gravitropic response in primary and lateral roots. Map-based cloning identified the mutant gene LAZY3 as a functional ortholog of the LAZY1 gene. Mutation of the LAZY3 gene reduced rootward polar auxin transport (PAT) in the primary root, which was also insensitive to the PAT inhibitor N-1-naphthylphthalamic acid. Moreover, immunolocalization of enhanced green fluorescent protein-tagged LAZY3 in L. japonicus exhibited polar localization of LAZY3 on the plasma membrane in root stele cells. We therefore suggest that the polar localization of LAZY3 in stele cells might be required for PAT in L. japonicus root. LAZY3 transcripts displayed asymmetric distribution at the root tip within hours of gravistimulation, while overexpression of LAZY3 under a constitutive promoter in lazy3 plants rescued the gravitropic response in roots. These data indicate that root gravitropism depends on the presence of LAZY3 but not on its asymmetric expression in root tips. Expression of other LAZY genes in a lazy3 background did not rescue the growth direction of roots, suggesting that the LAZY3 gene plays a distinct role in root gravitropism in L. japonicus.


Assuntos
Gravitropismo/genética , Lotus/genética , Proteínas de Plantas/genética , Raízes de Plantas/fisiologia , Lotus/crescimento & desenvolvimento , Lotus/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
10.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906256

RESUMO

Attachment of glycosylphosphatidylinositols (GPIs) to the C-termini of proteins is one of the most common posttranslational modifications in eukaryotic cells. GPI8/PIG-K is the catalytic subunit of the GPI transamidase complex catalyzing the transfer en bloc GPI to proteins. In this study, a T-DNA insertional mutant of rice with temperature-dependent drooping and fragile (df) shoots phenotype was isolated. The insertion site of the T-DNA fragment was 879 bp downstream of the stop codon of the OsGPI8 gene, which caused introns retention in the gene transcripts, especially at higher temperatures. A complementation test confirmed that this change in the OsGPI8 transcripts was responsible for the mutant phenotype. Compared to control plants, internodes of the df mutant showed a thinner shell with a reduced cell number in the transverse direction, and an inhomogeneous secondary wall layer in bundle sheath cells, while many sclerenchyma cells at the tops of the main veins of df leaves were shrunken and their walls were thinner. The df plants also displayed a major reduction in cellulose and lignin content in both culms and leaves. Our data indicate that GPI anchor proteins play important roles in biosynthesis and accumulation of cell wall material, cell shape, and cell division in rice.


Assuntos
Íntrons , Oryza , Fenótipo , Folhas de Planta , Brotos de Planta , Temperatura , Aciltransferases/genética , Aciltransferases/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Mutagênese Insercional , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA