Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 145(6): 863-74, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21640374

RESUMO

Metabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimer's and Huntington's diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimer's disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntington's disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Huntington/tratamento farmacológico , Ácido Cinurênico/análise , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Tiazóis/uso terapêutico , Administração Oral , Doença de Alzheimer/fisiopatologia , Animais , Química Encefálica , Modelos Animais de Doenças , Feminino , Humanos , Ácido Cinurênico/sangue , Masculino , Camundongos , Camundongos Transgênicos , Sulfonamidas/administração & dosagem , Tiazóis/administração & dosagem
2.
Nat Rev Neurosci ; 13(7): 465-77, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22678511

RESUMO

The essential amino acid tryptophan is not only a precursor of serotonin but is also degraded to several other neuroactive compounds, including kynurenic acid, 3-hydroxykynurenine and quinolinic acid. The synthesis of these metabolites is regulated by an enzymatic cascade, known as the kynurenine pathway, that is tightly controlled by the immune system. Dysregulation of this pathway, resulting in hyper-or hypofunction of active metabolites, is associated with neurodegenerative and other neurological disorders, as well as with psychiatric diseases such as depression and schizophrenia. With recently developed pharmacological agents, it is now possible to restore metabolic equilibrium and envisage novel therapeutic interventions.


Assuntos
Encéfalo/patologia , Encéfalo/fisiologia , Cinurenina/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Transdução de Sinais/fisiologia , Animais , Humanos
3.
J Pharmacol Exp Ther ; 355(1): 76-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26265321

RESUMO

Currently approved antidepressant drug treatment typically takes several weeks to be effective. The noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has shown efficacy as a rapid-acting treatment of depression, but its use is associated with significant side effects. We assessed effects following blockade of the glycineB co-agonist site of the NMDA receptor, located on the GluN1 subunit, by the selective full antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), delivered by systemic administration of its brain-penetrant prodrug 4-chlorokynurenine (4-Cl-KYN) in mice. Following administration of 4-Cl-KYN, 7-Cl-KYNA was promptly recovered extracellularly in hippocampal microdialysate of freely moving animals. The behavioral responses of the animals were assessed using measures of ketamine-sensitive antidepressant efficacy (including the 24-hour forced swim test, learned helplessness test, and novelty-suppressed feeding test). In these tests, distinct from fluoxetine, and similar to ketamine, 4-Cl-KYN administration resulted in rapid, dose-dependent and persistent antidepressant-like effects following a single treatment. The antidepressant effects of 4-Cl-KYN were prevented by pretreatment with glycine or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX). 4-Cl-KYN administration was not associated with the rewarding and psychotomimetic effects of ketamine, and did not induce locomotor sensitization or stereotypic behaviors. Our results provide further support for antagonism of the glycineB site for the rapid treatment of treatment-resistant depression without the negative side effects seen with ketamine or other channel-blocking NMDA receptor antagonists.


Assuntos
Glicina , Ketamina/farmacologia , Cinurenina/análogos & derivados , Pró-Fármacos/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/psicologia , Elevação dos Membros Posteriores , Ketamina/efeitos adversos , Cinurenina/efeitos adversos , Cinurenina/metabolismo , Cinurenina/farmacologia , Cinurenina/uso terapêutico , Masculino , Camundongos , Microdiálise , Pró-Fármacos/efeitos adversos , Pró-Fármacos/metabolismo , Pró-Fármacos/uso terapêutico , Receptores de N-Metil-D-Aspartato/metabolismo , Natação
4.
J Biol Chem ; 288(51): 36554-66, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24189070

RESUMO

Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo(-/-) mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo(-/-) mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo(-/-) mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD(+), did not differ between Kmo(-/-) and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo(-/-) mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo(-/-) mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.


Assuntos
Encéfalo/metabolismo , Deleção de Genes , Técnicas de Inativação de Genes , Quinurenina 3-Mono-Oxigenase/genética , Cinurenina/metabolismo , Animais , Cinurenina/análogos & derivados , Cinurenina/sangue , Quinurenina 3-Mono-Oxigenase/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Triptofano/metabolismo
5.
Neuron ; 57(2): 290-302, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18215625

RESUMO

Place-specific firing in the hippocampus is determined by path integration-based spatial representations in the grid-cell network of the medial entorhinal cortex. Output from this network is conveyed directly to CA1 of the hippocampus by projections from principal neurons in layer III, but also indirectly by axons from layer II to the dentate gyrus and CA3. The direct pathway is sufficient for spatial firing in CA1, but it is not known whether similar firing can also be supported by the input from CA3. To test this possibility, we made selective lesions in layer III of medial entorhinal cortex by local infusion of the neurotoxin gamma-acetylenic GABA. Firing fields in CA1 became larger and more dispersed after cell loss in layer III, whereas CA3 cells, which receive layer II input, still had sharp firing fields. Thus, the direct projection is necessary for precise spatial firing in the CA1 place cell population.


Assuntos
Lesões Encefálicas/patologia , Córtex Entorrinal/patologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Neurônios/fisiologia , Comportamento Espacial/fisiologia , Potenciais de Ação/fisiologia , Vias Aferentes/lesões , Vias Aferentes/fisiopatologia , Alcinos/farmacologia , Aminocaproatos/farmacologia , Animais , Comportamento Animal , Lesões Encefálicas/induzido quimicamente , Mapeamento Encefálico , Córtex Entorrinal/lesões , Fluoresceínas , Masculino , Neuroglia/patologia , Neuroglia/ultraestrutura , Neurônios/ultraestrutura , Neurotoxinas/farmacologia , Compostos Orgânicos/metabolismo , Fito-Hemaglutininas/metabolismo , Ratos , Ratos Sprague-Dawley , Coloração pela Prata/métodos , Estilbamidinas/metabolismo , Vimentina/metabolismo
6.
J Neurochem ; 120(6): 1026-35, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22224417

RESUMO

In the mammalian brain, the α7 nicotinic and NMDA receptor antagonist kynurenic acid is synthesized by irreversible enzymatic transamination of the tryptophan metabolite l-kynurenine. d-kynurenine, too, serves as a bioprecursor of kynurenic acid in several organs including the brain, but the conversion is reportedly catalyzed through oxidative deamination by d-amino acid oxidase. Using brain and liver tissue homogenates from rats and humans, and conventional incubation conditions for kynurenine aminotransferases, we show here that kynurenic acid production from d-kynurenine, like the more efficient kynurenic acid synthesis from l-kynurenine, is blocked by the aminotransferase inhibitor amino-oxyacetic acid. In vivo, focal application of 100 µM d-kynurenine by reverse microdialysis led to a steady rise in extracellular kynurenic acid in the rat striatum, causing a 4-fold elevation after 2 h. Attesting to functional significance, this increase was accompanied by a 36% reduction in extracellular dopamine. Both of these effects were duplicated by perfusion of 2 µM l-kynurenine. Co-infusion of amino-oxyacetic acid (2 mM) significantly attenuated the in vivo effects of d-kynurenine and essentially eliminated the effects of l-kynurenine. Thus, enzymatic transamination accounts in part for kynurenic acid synthesis from d-kynurenine in the brain. These results are discussed with regard to implications for brain physiology and pathology.


Assuntos
Encéfalo/enzimologia , Ácido Cinurênico/metabolismo , Cinurenina/metabolismo , Fígado/enzimologia , Transaminases/metabolismo , Animais , Área Sob a Curva , Encéfalo/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Cinurenina/farmacologia , Fígado/efeitos dos fármacos , Masculino , Microdiálise , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
Eur J Neurosci ; 35(10): 1605-12, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22515201

RESUMO

Levels of kynurenic acid (KYNA), an endogenous product of tryptophan degradation, are elevated in the brain and cerebrospinal fluid of individuals with schizophrenia (SZ). This increase has been implicated in the cognitive dysfunctions seen in the disease, as KYNA is an antagonist of the α7 nicotinic acetylcholine receptor and the N-methyl-d-aspartate receptor, both of which are critically involved in cognitive processes and in a defining neurodevelopmental period in the pathophysiology of SZ. We tested the hypothesis that early developmental increases in brain KYNA synthesis might cause biochemical and functional impairments in adulthood. To this end, we stimulated KYNA formation by adding the KYNA precursor kynurenine (100 mg/day) to the chow fed to rat dams from gestational day 15 to postnatal day 21 (PD 21). This treatment raised brain KYNA levels in the offspring by 341% on PD 2 and 210% on PD 21. Rats were then fed normal chow until adulthood (PD 56-80). In the adult animals, basal levels of extracellular KYNA, measured in the hippocampus by in vivo microdialysis, were elevated (+12%), whereas extracellular glutamate levels were significantly reduced (-13%). In separate adult animals, early kynurenine treatment was shown to impair performance in two behavioral tasks linked to hippocampal function, the passive avoidance test and the Morris water maze test. Collectively, these studies introduce a novel, naturalistic rat model of SZ, and also suggest that increases in brain KYNA during a vulnerable period in brain development may play a significant role in the pathophysiology of the disease.


Assuntos
Transtornos Cognitivos/induzido quimicamente , Cinurenina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Cromatografia Líquida de Alta Pressão , Transtornos Cognitivos/fisiopatologia , Técnicas Eletroquímicas , Feminino , Ácido Glutâmico/metabolismo , Ácido Cinurênico/metabolismo , Cinurenina/administração & dosagem , Cinurenina/análogos & derivados , Cinurenina/sangue , Cinurenina/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Microdiálise , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Wistar , Comportamento Espacial/efeitos dos fármacos
8.
Anal Biochem ; 421(2): 573-81, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22239963

RESUMO

We describe here a gas chromatography-tandem mass spectrometry (GC/MS/MS) method for the sensitive and concurrent determination of extracellular tryptophan and the kynurenine pathway metabolites kynurenine, 3-hydroxykynurenine (3-HK), and quinolinic acid (QUIN) in rat brain. This metabolic cascade is increasingly linked to the pathophysiology of several neurological and psychiatric diseases. Methodological refinements, including optimization of MS conditions and the addition of deuterated standards, resulted in assay linearity to the low nanomolar range. Measured in samples obtained by striatal microdialysis in vivo, basal levels of tryptophan, kynurenine, and QUIN were 415, 89, and 8 nM, respectively, but 3-HK levels were below the limit of detection (<2 nM). Systemic injection of kynurenine (100 mg/kg, i.p.) did not affect extracellular tryptophan but produced detectable levels of extracellular 3-HK (peak after 2-3 h: ~50 nM) and raised extracellular QUIN levels (peak after 2h: ~105 nM). The effect of this treatment on QUIN, but not on 3-HK, was potentiated in the N-methyl-D-aspartate (NMDA)-lesioned striatum. Our results indicate that the novel methodology, which allowed the measurement of extracellular kynurenine and 3-HK in the brain in vivo, will facilitate studies of brain kynurenines and of the interplay between peripheral and central kynurenine pathway functions under physiological and pathological conditions.


Assuntos
Encéfalo/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cinurenina/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Encéfalo/patologia , Química Encefálica , Cinurenina/análise , Masculino , Microdiálise , Ratos , Ratos Sprague-Dawley
9.
Neuropsychopharmacology ; 30(4): 697-704, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15496939

RESUMO

The content of the endogenous NMDA and alpha7 nicotinic acetylcholine receptor antagonist kynurenate (KYNA) is increased in the cerebral cortex and cerebrospinal fluid of patients with schizophrenia. In view of the very high incidence of smoking in schizophrenic individuals, a study was designed to examine the effect of acute and prolonged nicotine administration on brain KYNA levels in experimental animals. Adult male rats received subcutaneous nicotine injections twice daily for up to 10 days, and animals were routinely killed 1 h after the last injection. Neither acute treatment nor a 2-day regimen with 1 mg/kg nicotine (= 0.35 mg/kg pure base) caused changes in cerebral KYNA levels. Four- or 6 day-treatment with this dose resulted in 20-40% decreases in cerebral KYNA content. Animals treated with 1 or 10 mg/kg nicotine for 10 days showed dose-dependent, significant increases in KYNA in hippocampus, striatum, and cortex, but not in the serum. Discontinuation of nicotine treatment for 7 days restored brain KYNA to control levels. Separate animals, implanted with osmotic minipumps delivering 2 mg/kg of nicotine/day for 10 days also showed significant elevations in brain KYNA. Hippocampal microdialysis, performed in animals receiving nicotine (1 mg/kg) for 10 days, revealed a significant increase in basal extracellular KYNA levels compared to controls, whereas acute treatment with this dose produced no such change. Measurements of KYNA's bioprecursor kynurenine in brain or blood did not reveal any nicotine-induced changes. These results indicate that nicotine has a brain-specific, biphasic effect on the transamination of kynurenine to KYNA. Such nicotine-induced fluctuations in brain KYNA may cause functional changes in processes that regulate glutamatergic and cholinergic neurotransmission in the normal and diseased brain.


Assuntos
Química Encefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Ácido Cinurênico/metabolismo , Nicotina/farmacologia , Tabagismo/etiologia , Acetilcolina/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Química Encefálica/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Esquema de Medicação , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Cinurenina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Fumar/metabolismo , Tabagismo/metabolismo , Tabagismo/fisiopatologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
10.
Eur J Neurosci ; 4(12): 1264-1270, 1992.
Artigo em Inglês | MEDLINE | ID: mdl-12106390

RESUMO

The present study was designed to examine the cellular localization and biosynthetic machinery of the broad-spectrum excitatory amino acid receptor antagonist kynurenic acid in the lesioned rat hippocampus. Seven days after an intrahippocampal injection of 120 nmol quinolinic acid, which causes massive neurodegeneration in the dorsal hippocampus, kynurenic acid tissue levels and the activity of kynurenic acid's anabolic enzyme, kynurenine aminotransferase, were increased by 92% and 67%, respectively, as compared to controls. The steady-state levels of extracellular kynurenic acid, examined by microdialysis in unanaesthetized rats, were also increased in the lesioned tissue (from 93.6 +/- 10.2 to 207.6 +/- 18.6 fmol/30 microl dialysate). Using microdialysis, three compounds which are known to decrease kynurenic acid production from its bioprecursor l-kynurenine in brain slices and in vivo were tested for their ability to reduce the levels of endogenous kynurenic acid. In unlesioned tissue, aminooxyacetic acid (300 microM), veratridine (50 microM) and glutamate (5 mM), all administered through the dialysis probe, decreased extracellular kynurenic acid concentrations by 30 - 40%, i.e. to a lesser degree than in previous experiments in which kynurenine was used as a bioprecursor. Only the effect of veratridine was abolished in the quinolinate-lesioned hippocampus. These data indicate that kynurenic acid is produced in and liberated from astrocytes, and that aminooxyacetic acid and glutamate (but not veratridine) exert their action by directly affecting glial kynurenic acid biosynthesis. The results also suggest the existence of two distinct intracellular kynurenic acid pools, which are responsible for kynurenic acid storage and rapid kynurenic acid mobilization, respectively. Taken together, these features of kynurenic acid neurobiology may be of relevance in the control of excitatory amino acid receptor function under physiological and pathological conditions.

11.
Schizophr Bull ; 40 Suppl 2: S152-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24562494

RESUMO

Increased brain levels of the tryptophan metabolite kynurenic acid (KYNA) have been linked to cognitive dysfunctions in schizophrenia and other psychiatric diseases. In the rat, local inhibition of kynurenine aminotransferase II (KAT II), the enzyme responsible for the neosynthesis of readily mobilizable KYNA in the brain, leads to a prompt reduction in extracellular KYNA levels, and secondarily induces an increase in extracellular glutamate, dopamine, and acetylcholine levels in several brain areas. Using microdialysis in unanesthetized, adult rats, we now show that the novel, systemically active KAT II inhibitor BFF-816, applied orally at 30 mg/kg in all experiments, mimics the effects of local enzyme inhibition. No tolerance was seen when animals were treated daily for 5 consecutive days. Behaviorally, daily injections of BFF-816 significantly decreased escape latency in the Morris water maze, indicating improved performance in spatial and contextual memory. Thus, systemically applied BFF-816 constitutes an excellent tool for studying the neurobiology of KYNA and, in particular, for investigating the mechanisms linking KAT II inhibition to changes in glutamatergic, dopaminergic, and cholinergic function in brain physiology and pathology.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Tiazolidinedionas/farmacologia , Transaminases/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Microdiálise , Ratos , Ratos Sprague-Dawley , Esquizofrenia/tratamento farmacológico , Tiazolidinedionas/administração & dosagem
12.
Nat Neurosci ; 16(11): 1652-61, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24121737

RESUMO

In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse.


Assuntos
Encéfalo/metabolismo , Ácido Cinurênico/metabolismo , Transtornos Relacionados ao Uso de Substâncias , Analgésicos/administração & dosagem , Animais , Benzoxazinas/administração & dosagem , Agonistas de Receptores de Canabinoides/farmacologia , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , Discriminação Psicológica/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Dronabinol/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Morfolinas/administração & dosagem , Naftalenos/administração & dosagem , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Reforço Psicológico , Saimiri , Prevenção Secundária , Autoadministração , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/patologia , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Fatores de Tempo , Vigília
13.
Psychopharmacology (Berl) ; 220(3): 627-37, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22038535

RESUMO

RATIONALE: Cognitive deficits represent a core symptom cluster in schizophrenia (SZ) that is predictive of outcome but not effectively treated by current antipsychotics. Thus, there is a need for validated animal models for testing potential pro-cognitive drugs. OBJECTIVE: As kynurenic acid levels are increased in prefrontal cortex (PFC) of individuals with SZ, we acutely increased brain levels of this astrocyte-derived, negative modulator of alpha7 nicotinic acetylcholine receptors (α7nAChRs) by administration of its bioprecursor kynurenine and measured the effects on extracellular kynurenic acid and glutamate levels in PFC and also performance in a set-shifting task. RESULTS: Injections of kynurenine (100 mg/kg, i.p.) increased extracellular kynurenic acid (1,500%) and decreased glutamate levels (30%) in PFC. Kynurenine also produced selective deficits in set-shifting. Saline- and kynurenine-treated rats similarly acquired the compound discrimination and intra-dimensional shift (saline, 7.0 and 6.3 trials, respectively; kynurenine, 8.0 and 6.7). Both groups required more trials to acquire the initial reversal (saline, 15.3; kynurenine, 22.2). Only kynurenine-treated rats were impaired in acquiring the extra-dimensional shift (saline, 8.2; kynurenine, 21.3). These deficits were normalized by administering the α7nAChR positive allosteric modulator galantamine (3.0 mg/kg, i.p) prior to kynurenine, as trials were comparable between galantamine + kynurenine (7.8) and controls (8.2). Bilateral local perfusion of the PFC with galantamine (5.0 µM) also attenuated kynurenine-induced deficits. CONCLUSIONS: These results validate the use of animals with elevated brain kynurenic acid levels in SZ research and support studies of drugs that normalize brain kynurenic acid levels and/or positively modulate α7nAChRs as pro-cognitive treatments for SZ.


Assuntos
Cognição/efeitos dos fármacos , Galantamina/farmacologia , Ácido Cinurênico/metabolismo , Cinurenina/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Masculino , Nootrópicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Receptor Nicotínico de Acetilcolina alfa7
14.
Neuropsychopharmacology ; 36(11): 2357-67, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21796108

RESUMO

Kynurenic acid (KYNA), an astrocyte-derived metabolite, antagonizes the α7 nicotinic acetylcholine receptor (α7nAChR) and, possibly, the glycine co-agonist site of the NMDA receptor at endogenous brain concentrations. As both receptors are involved in cognitive processes, KYNA elevations may aggravate, whereas reductions may improve, cognitive functions. We tested this hypothesis in rats by examining the effects of acute up- or downregulation of endogenous KYNA on extracellular glutamate in the hippocampus and on performance in the Morris water maze (MWM). Applied directly by reverse dialysis, KYNA (30-300 nM) reduced, whereas the specific kynurenine aminotransferase-II inhibitor (S)-4-(ethylsulfonyl)benzoylalanine (ESBA; 0.3-3 mM) raised, extracellular glutamate levels in the hippocampus. Co-application of KYNA (100 nM) with ESBA (1 mM) prevented the ESBA-induced glutamate increase. Comparable effects on hippocampal glutamate levels were seen after intra-cerebroventricular (i.c.v.) application of the KYNA precursor kynurenine (1 mM, 10 µl) or ESBA (10 mM, 10 µl), respectively. In separate animals, i.c.v. treatment with kynurenine impaired, whereas i.c.v. ESBA improved, performance in the MWM. I.c.v. co-application of KYNA (10 µM) eliminated the pro-cognitive effects of ESBA. Collectively, these studies show that KYNA serves as an endogenous modulator of extracellular glutamate in the hippocampus and regulates hippocampus-related cognitive function. Our results suggest that pharmacological interventions leading to acute reductions in hippocampal KYNA constitute an effective strategy for cognitive improvement. This approach might be especially useful in the treatment of cognitive deficits in neurological and psychiatric diseases that are associated with increased brain KYNA levels.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Ácido Cinurênico/metabolismo , Memória/fisiologia , Animais , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Hipocampo/efeitos dos fármacos , Ácido Cinurênico/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
15.
J Mol Neurosci ; 40(1-2): 204-10, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19690987

RESUMO

The cognitive deficits seen in schizophrenia patients are likely related to abnormal glutamatergic and cholinergic neurotransmission in the prefrontal cortex. We hypothesized that these impairments may be secondary to increased levels of the astrocyte-derived metabolite kynurenic acid (KYNA), which inhibits alpha7 nicotinic acetylcholine receptors (alpha7AChR) and may thereby reduce glutamate release. Using in vivo microdialysis in unanesthetized rats, we show here that nanomolar concentrations of KYNA, infused directly or produced in situ from its bioprecursor kynurenine, significantly decrease extracellular glutamate levels in the prefrontal cortex. This effect was prevented by the systemic administration of galantamine (3 mg/kg) but not by donepezil (2 mg/kg), indicating that KYNA blocks the allosteric potentiating site of the alpha7AChR, which recognizes galantamine but not donepezil as an agonist. In separate rats, reduction of prefrontal KYNA formation by (S)-4-ethylsulfonyl benzoylalanine, a specific inhibitor of KYNA synthesis, caused a significant elevation in extracellular glutamate levels. Jointly, our results demonstrate that fluctuations in endogenous KYNA formation bidirectionally influence cortical glutamate concentrations. These findings suggest that selective attenuation of cerebral KYNA production, by increasing glutamatergic tone, might improve cognitive function in individuals with schizophrenia.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Ácido Cinurênico/metabolismo , Antagonistas Nicotínicos/metabolismo , Córtex Pré-Frontal/metabolismo , Animais , Inibidores da Colinesterase/farmacologia , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Galantamina/farmacologia , Ácido Cinurênico/farmacologia , Cinurenina/metabolismo , Masculino , Microdiálise , Antagonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Receptor Nicotínico de Acetilcolina alfa7
16.
Neuropsychopharmacology ; 35(8): 1734-42, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20336058

RESUMO

At endogenous brain concentrations, the astrocyte-derived metabolite kynurenic acid (KYNA) antagonizes the alpha 7 nicotinic acetylcholine receptor and, possibly, the glycine co-agonist site of the NMDA receptor. The functions of these two receptors, which are intimately involved in synaptic plasticity and cognitive processes, may, therefore, be enhanced by reductions in brain KYNA levels. This concept was tested in mice with a targeted deletion of kynurenine aminotransferase II (KAT II), a major biosynthetic enzyme of brain KYNA. At 21 days of age, KAT II knock-out mice had reduced hippocampal KYNA levels (-71%) and showed significantly increased performance in three cognitive paradigms that rely in part on the integrity of hippocampal function, namely object exploration and recognition, passive avoidance, and spatial discrimination. Moreover, compared with wild-type controls, hippocampal slices from KAT II-deficient mice showed a significant increase in the amplitude of long-term potentiation in vitro. These functional changes were accompanied by reduced extracellular KYNA (-66%) and increased extracellular glutamate (+51%) concentrations, measured by hippocampal microdialysis in vivo. Taken together, a picture emerges in which a reduction in the astrocytic formation of KYNA increases glutamatergic tone in the hippocampus and enhances cognitive abilities and synaptic plasticity. Our studies raise the prospect that interventions aimed specifically at reducing KYNA formation in the brain may constitute a promising molecular strategy for cognitive improvement in health and disease.


Assuntos
Cognição/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Ácido Cinurênico/metabolismo , Potenciação de Longa Duração/fisiologia , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva/fisiologia , Discriminação Psicológica/fisiologia , Comportamento Exploratório/fisiologia , Líquido Extracelular/metabolismo , Hipocampo/citologia , Técnicas In Vitro , Potenciação de Longa Duração/genética , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Microdiálise/métodos , Testes Neuropsicológicos , Técnicas de Patch-Clamp , Reconhecimento Psicológico/fisiologia , Transaminases/deficiência
17.
J Pharmacol Exp Ther ; 322(1): 48-58, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17446300

RESUMO

Galantamine, a drug used to treat Alzheimer's disease, is a nicotinic allosteric potentiating ligand, and kynurenic acid (KYNA), a neuroactive metabolite of the kynurenine pathway, is an endogenous noncompetitive inhibitor of alpha7* nicotinic receptors (nAChRs) [the asterisk next to the nAChR subunit is intended to indicate that the exact subunit composition of the receptor is not known (Pharmacol Rev 51:397-401, 1999)]. Here, possible interactions between KYNA and galantamine at alpha7* nAChRs were examined in vitro and in vivo. In the presence of tetrodotoxin (TTX), approximately 85% of cultured hippocampal neurons responded to choline (0.3-30 mM) with alpha7* nAChR-subserved whole-cell (type IA) currents. In the absence of TTX and in the presence of glutamate receptor antagonists, choline triggered inhibitory postsynaptic currents (IPSCs) by activating alpha7* nAChRs on GABAergic neurons synapsing onto the neurons under study. Galantamine (1-10 microM) potentiated, whereas KYNA (10 nM-1 mM) inhibited, choline-triggered responses. Galantamine (1 microM), applied before KYNA, shifted to the right the concentration-response relationship for KYNA to inhibit type IA currents, increasing the IC(50) of KYNA from 13.9 +/- 8.3 to 271 +/- 131 microM. Galantamine, applied before or after KYNA, antagonized inhibition of choline-triggered IPSCs by KYNA. Local infusion of KYNA (100 nM) in the rat striatum reduced extracellular dopamine levels in vivo. This effect resulted from alpha7* nAChR inhibition and was blocked by coapplied galantamine (1-5 microM). It is concluded that galantamine competitively antagonizes the actions of KYNA on alpha7* nAChRs. Reducing alpha7* nAChR inhibition by endogenous KYNA may be an important determinant of the effectiveness of galantamine in neurological and psychiatric disorders associated with decreased alpha7* nAChR activity in the brain.


Assuntos
Galantamina/farmacologia , Ácido Cinurênico/antagonistas & inibidores , Receptores Nicotínicos/efeitos dos fármacos , Regulação Alostérica , Doença de Alzheimer/tratamento farmacológico , Animais , Atropina/farmacologia , Células Cultivadas , Colina/farmacologia , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptor Nicotínico de Acetilcolina alfa7
18.
J Neurochem ; 93(3): 762-5, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15836634

RESUMO

Precise regulation of dopaminergic activity is of obvious importance for the physiology and pathology of basal ganglia. We report here that nanomolar concentrations of the astrocyte-derived neuroinhibitory metabolite kynurenic acid (KYNA) potently reduce the extracellular levels of striatal dopamine in unanesthetized rats in vivo. This effect, which is initiated by the KYNA-induced blockade of alpha7 nicotinic acetylcholine receptors, highlights the functional relevance of glia-neuron interactions in the striatum and indicates that even modest increases in the brain levels of endogenous KYNA are capable of interfering with dopaminergic neurotransmission.


Assuntos
Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Líquido Extracelular/efeitos dos fármacos , Ácido Cinurênico/administração & dosagem , Nanotecnologia/métodos , Animais , Corpo Estriado/metabolismo , Relação Dose-Resposta a Droga , Líquido Extracelular/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
19.
Epilepsia ; 46(7): 1010-6, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16026552

RESUMO

PURPOSE: The tryptophan metabolite kynurenic acid (KYNA) and its synthetic derivative, 7-chlorokynurenic acid (7-Cl-KYNA), are antagonists of the glycine co-agonist ("glycine(B)") site of the N-methyl-D-aspartate (NMDA)-receptor. Both compounds have neuroprotective and anticonvulsive properties but do not readily penetrate the blood-brain barrier. However, KYNA and 7-Cl-KYNA can be formed in, and released from, astrocytes after the peripheral administration of their transportable precursors kynurenine and 4-chlorokynurenine, respectively. The present study was designed to examine these biosynthetic processes, as well as astrogliosis, in animals with spontaneously recurring seizures. METHODS: The fate and formation of KYNA and 7-Cl-KYNA was studied in vivo (microdialysis) and in vitro (tissue slices) in rats exhibiting chronic seizure activity (pilocarpine model) and in appropriate controls. Neuronal loss and gliosis in these animals were examined immunohistochemically. RESULTS: In vivo microdialysis revealed higher ambient extracellular KYNA levels and enhanced de novo formation of 7-Cl-KYNA in the entorhinal cortex and hippocampus in epileptic rats. Complementary studies in tissue slices showed increased neosynthesis of KYNA and 7-Cl-KYNA in the same two brain areas. Microscopic analysis revealed pronounced astrocytic reactions in entorhinal cortex and hippocampus in epileptic animals. CONCLUSIONS: These results demonstrate that the epileptic brain can synthesize glycine(B) receptor antagonists in situ. Astrogliosis probably accounts for their enhanced production in chronically epileptic rats. These results bode well for the use of 4-chlorokynurenine in the treatment of chronic seizure disorders.


Assuntos
Epilepsia/metabolismo , Antagonistas de Aminoácidos Excitatórios/metabolismo , Ácido Cinurênico/análogos & derivados , Ácido Cinurênico/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Modelos Animais de Doenças , Córtex Entorrinal/metabolismo , Epilepsia/induzido quimicamente , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Gliose/metabolismo , Hipocampo/metabolismo , Técnicas In Vitro , Ácido Cinurênico/farmacologia , Microdiálise , Ratos , Ratos Sprague-Dawley , Receptores de Glicina/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos
20.
J Neurochem ; 90(3): 621-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15255939

RESUMO

The naturally occurring purine nucleoside adenosine has pronounced anticonvulsant and neuroprotective properties and plays a neuromodulatory role in the CNS. Kynurenic acid (KYNA) is an astrocyte-derived, endogenous neuroinhibitory compound, which shares several of adenosine's properties. In a first attempt to examine possible interactions between these two biologically active molecules, adenosine was focally applied into the striatum of freely moving rats by reverse microdialysis, and changes in extracellular KYNA were monitored over time. A 2-h infusion of adenosine increased KYNA levels in a dose-dependent manner, with 10 mm of adenosine causing a twofold elevation within 1 h. This effect was reversible and was effectively blocked by coinfusion of the specific A1 adenosine receptor antagonist 8-cyclopentyltheophylline (100 microm). In contrast, coinfusion of adenosine with MSX-3 (100 microm), an A2A receptor antagonist, did not affect the adenosine-induced increase in KYNA levels. Local striatal perfusion with the A1 receptor agonist N6-cyclopentyladenosine (100 microm) mimicked the effect of adenosine, whereas perfusion with the A2A receptor agonist CGS-21680 (100 microm) was ineffective. Finally, we tested the effect of adenosine (10 mm) on extracellular KYNA in striata that had been injected with quinolinate (60 nmol/1 microL) 7 days earlier. In this neuron-depleted tissue, perfusion with adenosine failed to affect extracellular KYNA levels. These data demonstrate that adenosine is capable of raising extracellular KYNA in the rat striatum by interacting with postsynaptic neuronal A1 receptors. This mechanism may result in a synergism between the neurobiological effects of adenosine and KYNA.


Assuntos
Adenosina/análogos & derivados , Adenosina/metabolismo , Ácido Cinurênico/metabolismo , Neostriado/metabolismo , Neurônios/metabolismo , Receptor A1 de Adenosina/metabolismo , Teofilina/análogos & derivados , Adenosina/administração & dosagem , Adenosina/farmacologia , Animais , Vias de Administração de Medicamentos , Líquido Extracelular/química , Líquido Extracelular/metabolismo , Infusões Parenterais , Ácido Cinurênico/análise , Masculino , Microdiálise , Neostriado/citologia , Neostriado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fenetilaminas/farmacologia , Ácido Quinolínico/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor A1 de Adenosina/efeitos dos fármacos , Teofilina/farmacologia , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA