Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Phys Rev Lett ; 132(26): 264101, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38996295

RESUMO

Proton tunneling is believed to be nonlocal in ice, but its range has been shown to be limited to only a few molecules. Here, we measured the thermal conductivity of ice under pressure up to 50 GPa and found it increases with pressure until 20 GPa but decreases at higher pressures. We attribute this nonmonotonic thermal conductivity to the collective tunneling of protons at high pressures, supported by large-scale quantum molecular dynamics simulations. The collective tunneling loops span several picoseconds in time and are as large as nanometers in space, which match the phonon periods and wavelengths, leading to strong phonon scattering at high pressures. Our results show direct evidence of global quantum motion existing in high-pressure ice and provide a new perspective to understanding the coupling between phonon propagation and atomic tunneling.

2.
Chem Rev ; 122(19): 15450-15500, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35894820

RESUMO

Phase transitions can occur in certain materials such as transition metal oxides (TMOs) and chalcogenides when there is a change in external conditions such as temperature and pressure. Along with phase transitions in these phase change materials (PCMs) come dramatic contrasts in various physical properties, which can be engineered to manipulate electrons, photons, polaritons, and phonons at the nanoscale, offering new opportunities for reconfigurable, active nanodevices. In this review, we particularly discuss phase-transition-enabled active nanotechnologies in nonvolatile electrical memory, tunable metamaterials, and metasurfaces for manipulation of both free-space photons and in-plane polaritons, and multifunctional emissivity control in the infrared (IR) spectrum. The fundamentals of PCMs are first introduced to explain the origins and principles of phase transitions. Thereafter, we discuss multiphysical nanodevices for electronic, photonic, and thermal management, attesting to the broad applications and exciting promises of PCMs. Emerging trends and valuable applications in all-optical neuromorphic devices, thermal data storage, and encryption are outlined in the end.

3.
Nano Lett ; 23(4): 1445-1450, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36695528

RESUMO

Carrier distribution and dynamics in semiconductor materials often govern their physical properties that are critical to functionalities and performance in industrial applications. The continued miniaturization of electronic and photonic devices calls for tools to probe carrier behavior in semiconductors simultaneously at the picosecond time and nanometer length scales. Here, we report pump-probe optical nanoscopy in the visible-near-infrared spectral region to characterize the carrier dynamics in silicon nanostructures. By coupling experiments with the point-dipole model, we resolve the size-dependent photoexcited carrier lifetime in individual silicon nanowires. We further demonstrate local carrier decay time mapping in silicon nanostructures with a sub-50 nm spatial resolution. Our study enables the nanoimaging of ultrafast carrier kinetics, which will find promising applications in the future design of a broad range of electronic, photonic, and optoelectronic devices.

4.
Nano Lett ; 23(19): 9020-9025, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37724920

RESUMO

Biological nervous systems rely on the coordination of billions of neurons with complex, dynamic connectivity to enable the ability to process information and form memories. In turn, artificial intelligence and neuromorphic computing platforms have sought to mimic biological cognition through software-based neural networks and hardware demonstrations utilizing memristive circuitry with fixed dynamics. To incorporate the advantages of tunable dynamic software implementations of neural networks into hardware, we develop a proof-of-concept artificial synapse with adaptable resistivity. This synapse leverages the photothermally induced local phase transition of VO2 thin films by temporally modulated laser pulses. Such a process quickly modifies the conductivity of the film site-selectively by a factor of 500 to "activate" these neurons and store "memory" by applying varying bias voltages to induce self-sustained Joule heating between electrodes after activation with a laser. These synapses are demonstrated to undergo a complete heating and cooling cycle in less than 120 ns.

5.
Opt Express ; 31(9): 14367-14376, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157302

RESUMO

Miniaturized spectrometers in the mid-infrared (MIR) are critical in developing next-generation portable electronics for advanced sensing and analysis. The bulky gratings or detector/filter arrays in conventional micro-spectrometers set a physical limitation to their miniaturization. In this work, we demonstrate a single-pixel MIR micro-spectrometer that reconstructs the sample transmission spectrum by a spectrally dispersed light source instead of spatially grated light beams. The spectrally tunable MIR light source is realized based on the thermal emissivity engineered via the metal-insulator phase transition of vanadium dioxide (VO2). We validate the performance by showing that the transmission spectrum of a magnesium fluoride (MgF2) sample can be computationally reconstructed from sensor responses at varied light source temperatures. With potentially minimum footprint due to the array-free design, our work opens the possibility where compact MIR spectrometers are integrated into portable electronic systems for versatile applications.

6.
Nano Lett ; 22(22): 9027-9035, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346996

RESUMO

Twisted stacking of van der Waals materials with moiré superlattices offers a new way to tailor their physical properties via engineering of the crystal symmetry. Unlike well-studied twisted bilayers, little is known about the overall symmetry and symmetry-driven physical properties of continuously supertwisted multilayer structures. Here, using polarization-resolved second harmonic generation (SHG) microscopy, we report threefold (C3) rotational symmetry breaking in supertwisted WS2 spirals grown on non-Euclidean surfaces, contrasting the intact symmetry of individual monolayers. This symmetry breaking is attributed to a geometrical magnifying effect in which small relative strain between adjacent twisted layers (heterostrain), verified by Raman spectroscopy and multiphysics simulations, generates significant distortion in the moiré pattern. Density-functional theory calculations can explain the C3 symmetry breaking and unusual SHG response by the interlayer wave function coupling. These findings thus pave the way for further developments in the so-called "3D twistronics".

7.
Phys Rev Lett ; 129(24): 245701, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563252

RESUMO

In a first-order phase transition, critical nucleus size governs nucleation kinetics, but the direct experimental test of the theory and determination of the critical nucleation size have been achieved only recently in the case of ice formation in supercooled water. The widely known metal-insulator phase transition (MIT) in strongly correlated VO_{2} is a first-order electronic phase transition coupled with a solid-solid structural transformation. It is unclear whether classical nucleation theory applies in such a complex case. In this Letter, we directly measure the critical nucleus size of the MIT by introducing size-controlled nanoscale nucleation seeds with focused ion irradiation at the surface of a deeply supercooled metal phase of VO_{2}. The results compare favorably with classical nucleation theory and are further explained by phase-field modeling. This Letter validates the application of classical nucleation theory as a parametrizable model to describe phase transitions of strongly correlated electron materials.

8.
Phys Rev Lett ; 128(8): 085901, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275649

RESUMO

Isotopically purified semiconductors potentially dissipate heat better than their natural, isotopically mixed counterparts as they have higher thermal conductivity (κ). But the benefit is low for Si at room temperature, amounting to only ∼10% higher κ for bulk ^{28}Si than for bulk natural Si (^{nat}Si). We show that in stark contrast to this bulk behavior, ^{28}Si (99.92% enriched) nanowires have up to 150% higher κ than ^{nat}Si nanowires with similar diameters and surface morphology. Using a first-principles phonon dispersion model, this giant isotope effect is attributed to a mutual enhancement of isotope scattering and surface scattering of phonons in ^{nat}Si nanowires, correlated via transmission of phonons to the native amorphous SiO_{2} shell. The Letter discovers the strongest isotope effect of κ at room temperature among all materials reported to date and inspires potential applications of isotopically enriched semiconductors in microelectronics.

9.
Proc Natl Acad Sci U S A ; 116(19): 9186-9190, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004055

RESUMO

Graphene-based nanodevices have been developed rapidly and are now considered a strong contender for postsilicon electronics. However, one challenge facing graphene-based transistors is opening a sizable bandgap in graphene. The largest bandgap achieved so far is several hundred meV in bilayer graphene, but this value is still far below the threshold for practical applications. Through in situ electrical measurements, we observed a semiconducting character in compressed trilayer graphene by tuning the interlayer interaction with pressure. The optical absorption measurements demonstrate that an intrinsic bandgap of 2.5 ± 0.3 eV could be achieved in such a semiconducting state, and once opened could be preserved to a few GPa. The realization of wide bandgap in compressed trilayer graphene offers opportunities in carbon-based electronic devices.

10.
Proc Natl Acad Sci U S A ; 116(47): 23404-23409, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685626

RESUMO

Phase transitions in halide perovskites triggered by external stimuli generate significantly different material properties, providing a great opportunity for broad applications. Here, we demonstrate an In-based, charge-ordered (In+/In3+) inorganic halide perovskite with the composition of Cs2In(I)In(III)Cl6 in which a pressure-driven semiconductor-to-metal phase transition exists. The single crystals, synthesized via a solid-state reaction method, crystallize in a distorted perovskite structure with space group I4/m with a = 17.2604(12) Å, c = 11.0113(16) Å if both the strong reflections and superstructures are considered. The supercell was further confirmed by rotation electron diffraction measurement. The pressure-induced semiconductor-to-metal phase transition was demonstrated by high-pressure Raman and absorbance spectroscopies and was consistent with theoretical modeling. This type of charge-ordered inorganic halide perovskite with a pressure-induced semiconductor-to-metal phase transition may inspire a range of potential applications.

11.
Nano Lett ; 21(5): 2183-2190, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33645993

RESUMO

Defective graphene holds great potential to enable the permeation of gas molecules at high rates with high selectivity due to its one-atom thickness and resultant atomically small pores at the defect sites. However, precise control and tuning of the size and density of the defects remain challenging. In this work, we introduce atomic-scale defects into bilayer graphene via a decoupled strategy of defect nucleation using helium ion irradiation followed by defect expansion using hydrogen plasma treatment. The cotreated membranes exhibit high permeability and simultaneously high selectivity compared to those singly treated by ion irradiation or hydrogen plasma only. High permeation selectivity values for H2/N2 and H2/CH4 of 495 and 877, respectively, are achieved for optimally cotreated membranes. The method presented can also be scaled up to prepare large-area membranes for gas separation, e.g., for hydrogen purification and recovery from H2/CH4 and H2/N2 mixtures.

12.
Phys Rev Lett ; 126(22): 223601, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34152166

RESUMO

The new physics of magic-angle twisted bilayer graphene (TBG) motivated extensive studies of flat bands hosted by moiré superlattices in van der Waals structures, inspiring the investigations into their photonic counterparts with potential applications including Bose-Einstein condensation. However, correlation between photonic flat bands and bilayer photonic moiré systems remains unexplored, impeding further development of moiré photonics. In this work, we formulate a coupled-mode theory for low-angle twisted bilayer honeycomb photonic crystals as a close analogy of TBG, discovering magic-angle photonic flat bands with a non-Anderson-type localization. Moreover, the interlayer separation constitutes a convenient degree of freedom in tuning photonic moiré bands without high pressure. A phase diagram is constructed to correlate the twist angle and separation dependencies to the photonic magic angles. Our findings reveal a salient correspondence between fermionic and bosonic moiré systems and pave the avenue toward novel applications through advanced photonic band or state engineering.

13.
Nano Lett ; 20(7): 5221-5227, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32539416

RESUMO

High in-plane anisotropies arise in layered materials with large structural difference along different in-plane directions. We report an extreme case in layered TiS3, which features tightly bonded atomic chains along the b-axis direction, held together by weaker, interchain bonding along the a-axis direction. Experiments show thermal conductivity along the chain twice as high as between the chain, an in-plane anisotropy higher than any other layered materials measured to date. We found that in contrast to most other materials, optical phonons in TiS3 conduct an unusually high portion of heat (up to 66% along the b-axis direction). The large dispersiveness of optical phonons along the chains, contrasted to many fewer dispersive optical phonons perpendicular to the chains, is the primary reason for the observed high anisotropy in thermal conductivity. The finding discovers materials with unusual thermal conduction mechanism, as well as provides new material platforms for potential heat-routing or heat-managing devices.

14.
Nano Lett ; 20(8): 5916-5921, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32578991

RESUMO

Atomically thin diamond, also called diamane, is a two-dimensional carbon allotrope and has attracted considerable scientific interest because of its potential physical properties. However, the successful synthesis of a pristine diamane has up until now not been achieved. We demonstrate the realization of a pristine diamane through diamondization of mechanically exfoliated few-layer graphene via compression. Resistance, optical absorption, and X-ray diffraction measurements reveal that hexagonal diamane (h-diamane) with a bandgap of 2.8 ± 0.3 eV forms by compressing trilayer and thicker graphene to above 20 GPa at room temperature and can be preserved upon decompression to ∼1.0 GPa. Theoretical calculations indicate that a (-2110)-oriented h-diamane is energetically stable and has a lower enthalpy than its few-layer graphene precursor above the transition pressure. Compared to gapless graphene, semiconducting h-diamane offers exciting possibilities for carbon-based electronic devices.

15.
Opt Express ; 28(26): 39203-39215, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379475

RESUMO

We experimentally investigate the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films using an infrared thermographic technique. During the semiconductor to metal phase change process, VO2 optical properties dynamically change and infrared emission undergoes a hysteresis loop due to differences between heating and cooling stages. The shape of the hysteresis loop was accurately monitored under different dynamic heating/cooling rates. In order to quantify and understand the effects of different rates, we used a numerical modelling approach in which a VO2 thin layer was modeled as metamaterial. The main experimental findings are interpreted assuming that both the rate of formation and shape of metallic inclusions are tuned with the heating/cooling rate. The structural transition from monoclinic to tetragonal phases is the main mechanism for controlling the global properties of the phase transition. However, our experimental results reveal that the dynamics of the heating/cooling process can become a useful parameter for further tuning options and lays out a macroscopic optical sensing scheme for the microscopic phase change dynamics of VO2. Our study sheds light on phase-transition dynamics and their effect on the infrared emission spectra of VO2 thin films, therefore enabling the heating/cooling rate to be an additional parameter to control infrared emission characteristics of thermal emitters. The hysteresis loop represents the phase coexistence region, thus being of fundamental importance for several applications, such as the operation of radiative thermal logic elements based on phase transition materials. For such applications, the phase transition region is shifted for heating and cooling processes. We also show that, depending on the way the phase change elements are heated, the temperature operation range will be slightly modified.

16.
Phys Rev Lett ; 125(22): 226403, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33315461

RESUMO

Graphene interfacing hexagonal boron nitride (h-BN) forms lateral moiré superlattices that host a wide range of new physical effects such as the creation of secondary Dirac points and band gap opening. A delicate control of the twist angle between the two layers is required as the effects weaken or disappear at large twist angles. In this Letter, we show that these effects can be reinstated in large-angle (∼1.8°) graphene/h-BN moiré superlattices under high pressures. A graphene/h-BN moiré superlattice microdevice is fabricated directly on the diamond culet of a diamond anvil cell, where pressure up to 8.3 GPa is applied. The band gap at the primary Dirac point is opened by 40-60 meV, and fingerprints of the second Dirac band gap are also observed in the valence band. Theoretical calculations confirm the band engineering with pressure in large-angle graphene/h-BN bilayers.

17.
Nano Lett ; 19(6): 3830-3837, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31059272

RESUMO

Considerable advances in manipulating heat flow in solids have been made through the innovation of artificial thermal structures such as thermal diodes, camouflages, and cloaks. Such thermal devices can be readily constructed only at the macroscale by mechanically assembling different materials with distinct values of thermal conductivity. Here, we extend these concepts to the microscale by demonstrating a monolithic material structure on which nearly arbitrary microscale thermal metamaterial patterns can be written and programmed. It is based on a single, suspended silicon membrane whose thermal conductivity is locally, continuously, and reversibly engineered over a wide range (between 2 and 65 W/m·K) and with fine spatial resolution (10-100 nm) by focused ion irradiation. Our thermal cloak demonstration shows how ion-write microthermotics can be used as a lithography-free platform to create thermal metamaterials that control heat flow at the microscale.

18.
Nano Lett ; 18(3): 1637-1643, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29400972

RESUMO

Along with the rapid development of hybrid electronic-photonic systems, multifunctional devices with dynamic responses have been widely investigated for improving many optoelectronic applications. For years, microelectro-opto-mechanical systems (MEOMS), one of the major approaches to realizing multifunctionality, have demonstrated profound reconfigurability and great reliability. However, modern MEOMS still suffer from limitations in modulation depth, actuation voltage, or miniaturization. Here, we demonstrate a new MEOMS multifunctional platform with greater than 50% optical modulation depth over a broad wavelength range. This platform is realized by a specially designed cantilever array, with each cantilever consisting of vanadium dioxide, chromium, and gold nanolayers. The abrupt structural phase transition of the embedded vanadium dioxide enables the reconfigurability of the platform. Diverse stimuli, such as temperature variation or electric current, can be utilized to control the platform, promising CMOS-compatible operating voltage. Multiple functionalities, including an active enhanced absorber and a reprogrammable electro-optic logic gate, are experimentally demonstrated to address the versatile applications of the MEOMS platform in fields such as communication, energy harvesting, and optical computing.

19.
Small ; 14(14): e1703621, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29479803

RESUMO

Micro-electromechanical (MEM) switches, with advantages such as quasi-zero leakage current, emerge as attractive candidates for overcoming the physical limits of complementary metal-oxide semiconductor (CMOS) devices. To practically integrate MEM switches into CMOS circuits, two major challenges must be addressed: sub 1 V operating voltage to match the voltage levels in current circuit systems and being able to deliver at least millions of operating cycles. However, existing sub 1 V mechanical switches are mostly subject to significant body bias and/or limited lifetimes, thus failing to meet both limitations simultaneously. Here 0.2 V MEM switching devices with ≳106 safe operating cycles in ambient air are reported, which achieve the lowest operating voltage in mechanical switches without body bias reported to date. The ultralow operating voltage is mainly enabled by the abrupt phase transition of nanolayered vanadium dioxide (VO2 ) slightly above room temperature. The phase-transition MEM switches open possibilities for sub 1 V hybrid integrated devices/circuits/systems, as well as ultralow power consumption sensors for Internet of Things applications.

20.
Nano Lett ; 17(1): 194-199, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27935309

RESUMO

Hydrostatic pressure applied using diamond anvil cells (DAC) has been widely explored to modulate physical properties of materials by tuning their lattice degree of freedom. Independently, electrical field is able to tune the electronic degree of freedom of functional materials via, for example, the field-effect transistor (FET) configuration. Combining these two orthogonal approaches would allow discovery of new physical properties and phases going beyond the known phase space. Such experiments are, however, technically challenging and have not been demonstrated. Herein, we report a feasible strategy to prepare and measure FETs in a DAC by lithographically patterning the nanodevices onto the diamond culet. Multiple-terminal FETs were fabricated in the DAC using few-layer MoS2 and BN as the channel semiconductor and dielectric layer, respectively. It is found that the mobility, conductance, carrier concentration, and contact conductance of MoS2 can all be significantly enhanced with pressure. We expect that the approach could enable unprecedented ways to explore new phases and properties of materials under coupled mechano-electrostatic modulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA