RESUMO
RATIONALE: Maleic acid is an industrial-grade chemical that is often used in adhesives, stabilizers, and preservatives. It is unknown whether long-term consumption of maleic acid modified starch is harmful to humans. However, many studies have indicated that maleic acid causes renal tubular damage in animal models, even as the associated pathways remain unclear. Sequential window acquisition of all theoretical fragment ion spectra (SWATH) is the most innovative of the label-free quantitative technologies which have better quantification performance. Therefore, SWATH technology was used to investigate the effect of maleic acid on the rat kidney proteome in this study. METHODS: Sprague-Dawley(SD) rats were treated with 0 mg/kg (control), 6 mg/kg (low-dose), 10 mg/kg (medium-dose), and 60 mg/kg (high-dose) of maleic acid. After kidney protein extraction, 28% SDS-PAGE was used, followed by in-gel digestion and desalting. Next, the samples were analyzed with ultra-performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS), and data-dependent acquisition (DDA) and SWATH technology were also used. The gene ontology and pathway analysis were accomplished. Ultimately, these protein biomarkers were validated by using scheduled high-resolution multiple reaction monitoring (sMRMHR ). RESULTS: Comparisons of the control group with the other three groups revealed that 95, 130, and 103 proteins were expressed at significantly different levels in the control group and in the low-dose, medium-dose, and high-dose groups, respectively. According to the gene ontology analysis, the major processes that these proteins were involved in were metabolic processes, biological regulation, cellular processes, and responses to stimuli; the major functions that these proteins were involved in were binding, hydrolase activity, catalytic activity, and oxidoreductase activity; and the major cellular components hat they were involved in were the cytoplasm, extracellular region, membrane, and mitochondria. According to the KEGG pathway analysis, these proteins were involved in 35 pathways, five of which, the carbohydrate metabolism, folate biosynthesis, renal tubular resorption, amino acid metabolism, and Ras signaling pathways, are discussed in this study. Ultimately, 19 proteins involved in 12 important pathways were validated by sMRMHR . CONCLUSIONS: It was demonstrated that maleic acid caused insufficient energy production, which might lead to a decrease in the activity of the sodium-potassium ATP pump and hydrogen ion ATP pump, which could in turn have caused renal tubular resorption and hydrogen ion regulation to be blocked, thus leading to the accumulation of hydrogen ions in the renal tubules, which would then result in renal tubular acidification followed finally by Fanconi syndrome.
Assuntos
Rim/efeitos dos fármacos , Maleatos/farmacologia , Proteoma/metabolismo , Animais , Rim/química , Rim/metabolismo , Maleatos/efeitos adversos , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Epidemiological evidence has linked fine particulate matter (PM2.5) to neurodegenerative diseases; however, the toxicological evidence remains unclear. The objective of this study was to investigate the effects of PM2.5 on neuropathophysiology in a hypertensive animal model. We examined behavioral alterations (Morris water maze), lipid peroxidation (malondialdehyde (MDA)), tau and autophagy expressions, neuron death, and caspase-3 levels after 3 and 6 months of whole-body exposure to urban PM2.5 in spontaneously hypertensive (SH) rats. RESULTS: SH rats were exposed to S-, K-, Si-, and Fe-dominated PM2.5 at 8.6 ± 2.5 and 10.8 ± 3.8 µg/m3 for 3 and 6 months, respectively. We observed no significant alterations in the escape latency, distance moved, mean area crossing, mean time spent, or mean swimming velocity after PM2.5 exposure. Notably, levels of MDA had significantly increased in the olfactory bulb, hippocampus, and cortex after 6 months of PM2.5 exposure (p < 0.05). We observed that 3 months of exposure to PM2.5 caused significantly higher expressions of t-tau and p-tau in the olfactory bulb (p < 0.05) but not in other brain regions. Beclin 1 was overexpressed in the hippocampus with 3 months of PM2.5 exposure, but significantly decreased in the cortex with 6 months exposure to PM2.5. Neuron numbers had decreased with caspase-3 activation in the cerebellum, hippocampus, and cortex after 6 months of PM2.5 exposure. CONCLUSIONS: Chronic exposure to low-level PM2.5 could accelerate the development of neurodegenerative pathologies in subjects with hypertension.
Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Exposição por Inalação , Masculino , Neuropatologia , Tamanho da Partícula , Ratos , Ratos Endogâmicos SHRRESUMO
Photoresist materials are indispensable in photolithography, a process used in semiconductor fabrication. The work process and potential hazards in semiconductor production have raised concerns as to adverse health effects. We therefore performed a health risk assessment of occupational exposure to positive photoresists in a single optoelectronic semiconductor factory in Taiwan. Positive photoresists are widely used in the optoelectronic semiconductor industry for photolithography. Occupational exposure was estimated using the Stoffenmanager® model. Bayesian modeling incorporated available personal air sampling data. We examined the composition and by-products of the photoresists according to descriptions published in the literature and patents; the main compositions assessed were propylene glycol methyl ether acetate (PGMEA), novolac resin, photoactive compound, phenol, cresol, benzene, toluene, and xylene. Reference concentrations for each compound were reassessed and updated if necessary. Calculated hazard quotients were greater than 1 for benzene, phenol, xylene, and PGMEA, indicating that they have the potential for exposures that exceed reference levels. The information from our health risk assessment suggests that benzene and phenol have a higher level of risk than is currently acknowledged. Undertaking our form of risk assessment in the workplace design phase could identify compounds of major concern, allow for the early implementation of control measures and monitoring strategies, and thereby reduce the level of exposure to health risks that workers face throughout their career.
Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Indústrias , Exposição Ocupacional , Medição de Risco , Semicondutores , Humanos , TaiwanRESUMO
Prenatal exposure to nonylphenol (NP) and/or bisphenol A (BPA) has been reported to be associated with adverse birth outcomes; however, the underlying mechanisms remain unclear. The primary mechanism is endocrine disruption of the binding affinity for the estrogen receptor, but oxidative stress and inflammation might also play a contributory role. We aimed to investigate urinary NP and BPA levels in relation to biomarkers of oxidative/nitrative stress and inflammation and to explore whether changes in oxidative/nitrative stress are a function of prenatal exposure to NP/BPA and inflammation in 241 mother-fetus pairs. Third-trimester urinary biomarkers of oxidative/nitrative stress were simultaneously measured, including products of oxidatively and nitratively damaged DNA (8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NO2Gua)) as well as products of lipid peroxidation (8-iso-prostaglandin F2α (8-isoPF2α) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA)). The antioxidant glutathione peroxidase (GPx) and inflammation biomarkers, including C-reactive protein (CRP) and a panel of cytokines (interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)), were analyzed in maternal and umbilical cord plasma samples. In adjusted models, we observed significant positive associations between NP exposure and 8-OHdG and 8-NO2Gua levels, between BPA and 8-isoPF2α levels, and between maternal CRP levels and HNE-MA levels. Additionally, BPA and TNF-α levels in cord blood were inversely associated with maternal and GPx levels in cord blood as well as maternal TNF-α levels were inversely associated with maternal GPx levels. These results support a role for exposure to NP and BPA and possibly inflammation in increasing oxidative/nitrative stress and decreasing antioxidant activity during pregnancy.
Assuntos
Compostos Benzidrílicos/toxicidade , Dano ao DNA , Inflamação , Estresse Oxidativo , Fenóis/toxicidade , Adulto , Biomarcadores , Estudos de Coortes , Feminino , Sangue Fetal , Humanos , Exposição Materna , Gravidez , Fator de Necrose Tumoral alfa/sangueRESUMO
Maleic acid (MA), a chemical intermediate used in many consumer and industrial products, was intentionally adulterated in a variety of starch-based foods and instigated food safety incidents in Asia. We aim to elucidate possible mechanisms of MA toxicity after repeated exposure by (1) determining the changes of metabolic profile using 1 H nuclear magnetic resonance spectroscopy and multivariate analysis, and (2) investigating the occurrence of oxidative stress using liquid chromatography tandem mass spectrometry by using Sprague-Dawley rat urine samples. Adult male rats were subjected to a 28 day subchronic study (0, 6, 20 and 60 mg kg-1 ) via oral gavage. Urine was collected twice a day on days 0, 7, 14, 21 and 28; organs underwent histopathological examination. Changes in body weight and relative kidney weights in medium- and high-dose groups were significantly different compared to controls. Morphological alterations were evident in the kidneys and liver. Metabolomic results demonstrated that MA exposure increases the urinary concentrations of 8-hydroxy-2'-deoxyguanosine, 8-nitroguanine and 8-iso-prostaglandin F2α ; levels of acetoacetate, hippurate, alanine and acetate demonstrated time- and dose-dependent variations in the treatment groups. Findings suggest that MA consumption escalates oxidative damage, membrane lipid destruction and disrupt energy metabolism. These aforementioned changes in biomarkers and endogenous metabolites elucidate and assist in characterizing the possible mechanisms by which MA induces nephro- and hepatotoxicity.
Assuntos
Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Maleatos/toxicidade , Metaboloma/efeitos dos fármacos , Animais , Biomarcadores/urina , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Rim/patologia , Fígado/patologia , Masculino , Espectrometria de Massas , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade SubcrônicaRESUMO
8-Hydroxy-2-deoxyguanosine (8-OHdG), 8-nitroguanine (8-NO2Gua), 8-iso-prostaglandin F2α (8-IsoPGF2α), and N-acetyl-S-(tetrahydro-5-hydroxy-2-pentyl-3-furanyl)-L-cysteine (HNE-MA) are well-studied and representative biomarkers for oxidative DNA damage, inflammation, and lipid peroxidation; all of which have been associated with increases in risks of various diseases and cancers. A rapid and highly sensitive isotope-dilution liquid-chromatography tandem mass spectrometry (LC-MS/MS) method was developed to simultaneously quantify the aforementioned biomarkers in urine. Upon validation, this method shows excellent feasibility, sensitivity (0.008-0.03 ng/mL) and satisfactory recoveries (88.7-95.4%); the calibration curves displayed excellent linearity with coefficients of determination (R(2)) greater than 0.998. Additionally, low variations were observed in the relative standard deviation for intra- and inter-day measurements for the four analytes. The relative matrix effects for all four analytes ranged from 2.04 to 3.27%, which signaled that interferences from endogenous levels of the analytes were deemed statistically insignificant. This study successfully developed an analytical method capable to simultaneously quantify urinary 8-OHdG, 8-NO2Gua, 8-IsoPGF2α, and HNE-MA. This analytical protocol can be applied towards conducting epidemiological studies to reveal the mechanisms related to disease development, and thus evaluate the associated risks of diseases.
Assuntos
Dano ao DNA , Guanosina/análogos & derivados , Guanosina/urina , Estresse Oxidativo , Biomarcadores/urina , Cromatografia Líquida/métodos , Feminino , Humanos , Masculino , Espectrometria de Massas/métodosRESUMO
Acrylamide (AA), a rodent carcinogen, is widely used in industry and present in cigarette smoke as well as in foods processed at high temperatures. The metabolic activation of AA to glycidamide (GA) could be critical for AA carcinogenicity since GA causes DNA adduct formation in vivo. N7-(2-carbamoyl-2-hydroxyethyl) guanine (N7-GAG), the most abundant DNA adduct of AA, is subjected to spontaneous and enzymatic depurination and excreted through urine. Urinary N7-GAG analysis can confirm AA genotoxicity and identify active species of AA metabolites in humans, thereby serving as a risk-associated biomarker for molecular epidemiology studies. This study aimed to develop an isotope-dilution solid-phase extraction liquid chromatography tandem mass spectrometry method to comparatively analyze urinary N7-GAG levels in nonsmokers and smokers. Urinary N-acetyl-S-(propionamide)-cysteine (AAMA), a metabolite of AA, was also analyzed as a biomarker for current AA exposure. Urinary N7-GAG was quantified by monitoring m/z 239 â 152 for N7-GAG and m/z 242 â 152 for (13)C3-labeled N7-GAG under positive electron spray ionization and multiple reaction mode. The median urinary N7-GAG level was 0.93 µg/g creatinine in nonsmokers (n = 33) and 1.41 µg/g creatinine in smokers (n = 30). Multiple linear regression analysis of data revealed that N7-GAG levels were only significantly associated with AAMA levels. These results demonstrate that urinary N7-GAG of nonsmokers and smokers is significantly associated with a very low level of dietary AA intake, assessed by analyzing urinary AAMA.
Assuntos
Acetilcisteína/análogos & derivados , Acrilamida/metabolismo , Carcinógenos/metabolismo , Cotinina/urina , Guanina/análogos & derivados , Fumar/urina , Acetilcisteína/urina , Adulto , Biomarcadores/urina , Dieta , Exposição Ambiental/análise , Guanina/urina , Humanos , Adulto JovemRESUMO
A two-dimensional (2D) hydrophilic interaction liquid chromatography (HILIC) and reverse-phase (RP) liquid chromatography (LC) system coupled with triple-quadrupole mass spectrometry (MS) was developed to comprehensively profile ceramides and phosphatidylcholine in extracted biological samples. Briefly, the 2D HILIC-RPLC system used a silica HILIC column operated in the first dimension to distinguish the lipid classes and a BEH C18 column operated in the second dimension to separate the lipid species of the same class. The regression linearity of each lipid was satisfactory in both systems; however, the absolute matrix effect factor was reduced in 2D LC-MS/MS system. Limits of detection of 2D LC-MS/MS system were 2- to 3-fold lower compared with one-dimensional RPLC-MS/MS. The recovery from the sample ranged from 84.5 to 110%. To summarize, the developed method was proven to be accurate and producible, as relative standard deviations remained <20% at three spiked levels. The efficiency of this newly developed system was applied to measure changes of lipids in the liver of mice after naphthalene treatment. Orthogonal projection to latent structures-discriminant analysis discriminated the lipids from control and the treatment group. We concluded that 2D LC-MS/MS is a promising method to assist lipidomic studies of complex biological samples.
Assuntos
Ceramidas/análise , Cromatografia Líquida/métodos , Fígado/metabolismo , Fosfatidilcolinas/análise , Espectrometria de Massas em Tandem/métodos , Animais , Ceramidas/química , Ceramidas/metabolismo , Limite de Detecção , Modelos Lineares , Fígado/química , Fígado/efeitos dos fármacos , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos ICR , Naftalenos/toxicidade , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Reprodutibilidade dos TestesRESUMO
We evaluated the reliability of 8-hydroxy-2'-deoxyguanosine (8-OHdG), and determined its ability to predict functional outcomes in stroke survivors. The rehabilitation effect on 8-OHdG and functional outcomes were also assessed. Sixty-one stroke patients received a 4-week rehabilitation. Urinary 8-OHdG levels were determined by liquid chromatography-tandem mass spectrometry. The test-retest reliability of 8-OHdG was good (interclass correlation coefficient=0.76). Upper-limb motor function and muscle power determined by the Fugl-Meyer Assessment (FMA) and Medical Research Council (MRC) scales before rehabilitation showed significant negative correlation with 8-OHdG (r=-0.38, r=-0.30; p<0.05). After rehabilitation, we found a fair and significant correlation between 8-OHdG and FMA (r=-0.34) and 8-OHdG and pain (r=0.26, p<0.05). Baseline 8-OHdG was significantly correlated with post-treatment FMA, MRC, and pain scores (r=-0.34, -0.31, and 0.25; p<0.05), indicating its ability to predict functional outcomes. 8-OHdG levels were significantly decreased, and functional outcomes were improved after rehabilitation. The exploratory study findings conclude that 8-OHdG is a reliable and promising biomarker of oxidative stress and could be a valid predictor of functional outcomes in patients. Monitoring of behavioral indicators along with biomarkers may have crucial benefits in translational stroke research.
Assuntos
Dano ao DNA , Estresse Oxidativo , Reabilitação do Acidente Vascular Cerebral , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Idoso , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Fadiga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora , Manejo da Dor , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologiaRESUMO
INTRODUCTION: Environmental tobacco smoke (ETS) is a hazardous component of indoor air, and may increase the risk of respiratory diseases, atherosclerosis and otitis media in children. In this study, we explored the relationship between time inside the house, ETS exposure and urinary cotinine level, and also determined the association of time inside the house on asthma phenotypes when children exposed to ETS. METHODS: A total of 222 asthmatic children and 205 non-asthmatic controls were recruited in the Genetic and Biomarker study for Childhood Asthma (GBCA). Structured questionnaires and time-location pattern questionnaires were administered by face-to-face interview. Urinary cotinine was measured by liquid chromatography tandem mass spectrometry (LC/MS/MS). The level of household ETS exposure was assessed using the cotinine/creatinine ratio (CCR). RESULTS: In general, urinary cotinine and CCR were higher in subjects exposed to household ETS than those who never had ETS at home. A significant positive relationship was found between average time inside the house and urinary CCR in asthmatic children with current ETS at home (ß=0.278, p=0.02). After adjustment for age and gender, average time inside the house was positively related to severe wheeze in asthmatic children with household ETS within 1 month (OR: 1.26, 95%: 1.02-1.64). CONCLUSIONS: Our study suggests that the major source of ETS exposure for children is due to longer period of exposures among children living with adult smokers at home. Home-smoking restrictions that effectively prevent children from being exposed to ETS would be worthwhile.
Assuntos
Poluição do Ar em Ambientes Fechados/análise , Asma/etiologia , Asma/urina , Cotinina/urina , Exposição Ambiental/análise , Poluição por Fumaça de Tabaco/análise , Adolescente , Poluição do Ar em Ambientes Fechados/efeitos adversos , Criança , Estudos Transversais , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , Análise de Regressão , Inquéritos e Questionários , Poluição por Fumaça de Tabaco/efeitos adversosRESUMO
To date, the variant Creutzfeldt-Jakob disease (vCJD) risk assessments that have been performed have primarily focused on predicting future vCJD cases in the United Kingdom, which underwent a bovine spongiform encephalopathy (BSE) epidemic between 1980 and 1996. Surveillance of potential BSE cases was also used to assess vCJD risk, especially in other BSE-prevalent EU countries. However, little is known about the vCJD risk for uninfected individuals who accidentally consume BSE-contaminated meat products in or imported from a country with prevalent BSE. In this article, taking into account the biological mechanism of abnormal prion PrP(res) aggregation in the brain, the probability of exposure, and the expected amount of ingested infectivity, we establish a stochastic mean exponential growth model of lifetime exposure through dietary intake. Given the findings that BSE agents behave similarly in humans and macaques, we obtained parameter estimates from experimental macaque data. We then estimated the accumulation of abnormal prions to assess lifetime risk of developing clinical signs of vCJD. Based on the observed number of vCJD cases and the estimated number of exposed individuals during the BSE epidemic period from 1980 to 1996 in the United Kingdom, an exposure threshold hypothesis is proposed. Given the age-specific risk of infection, the hypothesis explains the observations very well from an extreme-value distribution fitting of the estimated BSE infectivity exposure. The current BSE statistics in the United Kingdom are provided as an example.
Assuntos
Síndrome de Creutzfeldt-Jakob/etiologia , Encefalopatia Espongiforme Bovina/transmissão , Produtos da Carne/efeitos adversos , Animais , Bovinos , Síndrome de Creutzfeldt-Jakob/epidemiologia , Encefalopatia Espongiforme Bovina/epidemiologia , Humanos , Incidência , Produtos da Carne/virologia , Modelos Teóricos , Fatores de Risco , Reino Unido/epidemiologiaRESUMO
New approach methodologies in toxicology, such as in vitro high-throughput screening (HTS), can minimize the use of experimental animals and allow mechanism-based predictions of in vivo toxicity. HTS data has been increasingly used in the regulatory context; however, only a few studies integrated dietary exposure and HTS data to foster chemical prioritization in food. Additionally, the endocrine-associated risk of veterinary drug residues in food is yet to be fully characterized. This study aims to systematically compare the translated HTS data with the acceptable daily intake (ADI) values and prioritize the pesticides and veterinary drug residues (n = 294) in food using the exposure-activity ratio (EAR) and Toxicological Prioritization index (ToxPi). The dietary exposure assessment was accomplished using a stochastic human exposure and dose simulation high-throughput model (SHEDS-HT). We selected 76 HTS assays from 12 nuclear receptors to represent the molecular initiating event (MIE) of endocrine-disrupting phenotypes. Chemical prioritization was achieved using 4 methods (i.e., EAR-OED, EAR-ADI, ToxPi-exposure + ADI, and ToxPi-exposure + endocrine score), where the consensus prioritized chemicals were fipronil, furazolidone, oxolinic acid, and oxytetracycline for the Taiwanese population. This case study demonstrates the utility of HTS data in fostering regulatory decisions on chemicals, especially for those lacking comprehensive toxicity data.
Assuntos
Praguicidas , Drogas Veterinárias , Animais , Humanos , Praguicidas/toxicidade , Drogas Veterinárias/toxicidade , Dieta , Simulação por Computador , Ensaios de Triagem em Larga Escala , Medição de Risco/métodosRESUMO
Marked reductions in mean annual rainfall associated with climate change in Eswatini in Southern Africa have encouraged the recycling of irrigation water and the increased use of pesticides in agricultural production, raising concerns about potential ecological and health risks due to long-term exposure to pesticide residues in soil and irrigation water. This probabilistic integrated risk assessment used liquid chromatography with tandem mass spectrometry to analyze the concentrations of four commonly used agricultural pesticides (ametryn, atrazine, pendimethalin, and 2,4-dichlorophenoxyacetic acid (2,4-D)) in irrigation water and topsoil samples from farmlands in Eswatini to assess potential ecological and health risks due to exposure. The concentrations of these pesticides ranged from undetectable to 0.104 µg/L in irrigation water and from undetectable to 2.70 µg/g in soil. The probabilistic multi-pathway and multi-route risk assessments conducted revealed hazard indices exceeding 1.0 for all age groups for ametryn and atrazine, suggesting that the daily consumption of recycled irrigation water and produce from the fields in this area may pose considerable health risks. The indices pertaining to ecological risks had values less than 0.1. Adaptation measures are recommended to efficiently manage pesticide use in agriculture, and further research will ensure that agriculture can adapt to climate change and that the general public and ecosystem are protected.
RESUMO
Exposure to the vinyl monomer acrylonitrile (AN) is primarily occupational. AN is also found in cigarette smoke. AN can be detoxified to form N-acetyl-S-(2-cyanoethyl)-cysteine (CEMA) or activated to 2-cyanoethylene oxide (CEO) and detoxified to form N-acetyl-S-(1-cyano-2-hydroxyethyl)-cysteine (CHEMA) and N-acetyl-S-(2-hydroxyethyl)-cysteine (HEMA). These urinary mercapturic acids (MAs) are considered to be potential biomarkers of AN exposure. This study assessed personal AN exposure, urinary MAs (CEMA, CHEMA, and HEMA), and cotinine (a biomarker of cigarette smoke) in 80 AN-exposed and 23 non-exposed factory workers from urine samples provided before and after work shifts. Unambiguous linear correlations were observed between levels of urinary CEMA and CHEMA with personal AN exposures, indicating their potential as chemically-specific biomarkers for AN exposures. AN exposure was the dominant factor in MA formation for AN-exposed workers, whereas urinary cotinine used as a biomarker showed that cigarette smoke exposure was the primary factor for non-exposed workers. The CHEMA/CEMA and (CHEMA+HEMA)/CEMA ratios in this human study differ from those in similar studies of AN-treated rats and mice in literature, suggesting a possible dose- and species-dependent effect in AN metabolic activation and detoxification.
Assuntos
Acrilonitrila , Animais , Humanos , Camundongos , Ratos , Acetilcisteína/urina , Acrilonitrila/toxicidade , Acrilonitrila/urina , Biomarcadores/urina , CotininaRESUMO
Safrole oxide (SAFO), a metabolite of naturally occurring hepatocarcinogen safrole, is implicated in causing DNA adduct formation. Our previous study first detected the most abundant SAFO-induced DNA adduct, N7-(3-benzo[1,3] dioxol-5-yl-2-hydroxypropyl)guanine (N7γ-SAFO-G), in mouse urine using a well-developed isotope-dilution high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (ID-HPLC-ESI-MS/MS) method. This study further elucidated the genotoxic mode of action of SAFO in mice treated with SAFO 30, 60, 90, or 120 mg/kg for 28 days. The ID-HPLC-ESI-MS/MS method detected N7γ-SAFO-G with excellent sensitivity and specificity in mouse liver and urine of SAFO-treated mice. Our data provide the first direct evidence of SAFO-DNA adduct formation in rodent tissues. N7γ-SAFO-G levels in liver were significantly increased by SAFO 120 mg/kg compared with SAFO 30 mg/kg, suggesting rapid spontaneous or enzymatic depurination of N7γ-SAFO-G in tissue DNA. Urinary N7γ-SAFO-G exhibited a sublinear dose response. Moreover, the micronucleated peripheral reticulocyte frequencies increased dose-dependently and significantly correlated with N7γ-SAFO-G levels in liver (r = 0.8647; p < 0.0001) and urine (r = 0.846; p < 0.0001). Our study suggests that safrole-mediated genotoxicity may be caused partly by its metabolic activation to SAFO and that urinary N7γ-SAFO-G may serve as a chemically-specific cancer risk biomarker for safrole exposure.
Assuntos
Adutos de DNA , Safrol , Camundongos , Animais , Safrol/toxicidade , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização por Electrospray/métodos , Guanina , Reticulócitos/química , Reticulócitos/metabolismo , Fígado/metabolismo , Cromatografia Líquida de Alta PressãoRESUMO
Aristolochic acids (AAs) are naturally occurring genotoxic carcinogens linked to Balkan endemic nephropathy and aristolochic acid nephropathy. Aristolochic acid I and II (AA-I and AA-II) are the most abundant AAs, and AA-I has been reported to be more genotoxic and nephrotoxic than AA-II. This study aimed to explore metabolic differences underlying the differential toxicity. We developed a novel microdialysis sampling coupled with solid-phase extraction liquid chromatography-tandem mass spectrometry (MD-SPE-LC-MS/MS) to simultaneously study the toxicokinetics (TK) of AA-I and AA-II and their corresponding aristolactams (AL-I and AL-II) in the blood of Sprague Dawley rats co-treated with AA-1 and AA-II. Near real-time monitoring of these analytes in the blood of treated rats revealed that AA-I was absorbed, distributed, and eliminated more rapidly than AA-II. Moreover, the metabolism efficiency of AA-I to AL-I was higher compared to AA-II to AL-II. Only 0.58% of AA-I and 0.084% of AA-II was reduced to AL-I and AL-II, respectively. The findings are consistent with previous studies and support the contention that differences in the in vivo metabolism of AA-I and AA-II may be critical factors for their differential toxicities.
Assuntos
Ácidos Aristolóquicos , Nefropatia dos Bálcãs , Nefropatias , Ratos , Animais , Cromatografia Líquida/métodos , Ácidos Aristolóquicos/toxicidade , Ácidos Aristolóquicos/química , Espectrometria de Massas em Tandem/métodos , Ratos Sprague-Dawley , Microdiálise , ToxicocinéticaRESUMO
BACKGROUND AND PURPOSE: The increasing availability of robot-assisted therapy (RT), which provides quantifiable, reproducible, interactive, and intensive practice, holds promise for stroke rehabilitation, but data on its dose-response relation are scanty. This study used 2 different intensities of RT to examine the treatment effects of RT and the effect on outcomes of the severity of initial motor deficits. METHODS: Fifty-four patients with stroke were randomized to a 4-week intervention of higher-intensity RT, lower-intensity RT, or control treatment. The primary outcome, the Fugl-Meyer Assessment, was administered at baseline, midterm, and posttreatment. Secondary outcomes included the Medical Research Council scale, the Motor Activity Log, and the physical domains of the Stroke Impact Scale. RESULTS: The higher-intensity RT group showed significantly greater improvements on the Fugl-Meyer Assessment than the lower-intensity RT and control treatment groups at midterm (P=0.003 and P=0.02) and at posttreatment (P=0.04 and P=0.02). Within-group gains on the secondary outcomes were significant, but the differences among the 3 groups did not reach significance. Recovery rates of the higher-intensity RT group were higher than those of the lower-intensity RT group, particularly on the Fugl-Meyer Assessment. Scatterplots with curve fitting showed that patients with moderate motor deficits gained more improvements than those with severe or mild deficits after the higher-intensity RT. CONCLUSIONS: This study demonstrated the higher treatment intensity provided by RT was associated with better motor outcome for patients with stroke, which may shape further stroke rehabilitation. Clinical Trial Registration- URL: http://clinicaltrials.gov. Unique identifier: NCT00917605.
Assuntos
Transtornos das Habilidades Motoras/fisiopatologia , Destreza Motora/fisiologia , Robótica , Índice de Gravidade de Doença , Reabilitação do Acidente Vascular Cerebral , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Avaliação de Resultados em Cuidados de Saúde , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Resultado do TratamentoRESUMO
Mass spectrometry plays an increasingly important role in the search for and quantification of novel chemically specific biomarkers. The revolutionary advances in mass spectrometry instrumentation and technology empower scientists to specifically analyze DNA and protein adducts, considered as molecular dosimeters, derived from reactions of a carcinogen or its active metabolites with DNA or protein. Analysis of the adducted DNA bases and proteins can elucidate the chemically reactive species of carcinogens in humans and can serve as risk-associated biomarkers for early prediction of cancer risk. In this article, we review and compare the specificity, sensitivity, resolution, and ease-of-use of mass spectrometry methods developed to analyze ethylene oxide (EO)-induced DNA and protein adducts, particularly N7-(2-hydroxyethyl)guanine (N7-HEG) and N-(2-hydroxyethyl)valine (HEV), in human samples and in animal tissues. GC/ECNCI-MS analysis after HPLC cleanup is the most sensitive method for quantification of N7-HEG, but limited by the tedious sample preparation procedures. Excellent sensitivity and specificity in analysis of N7-HEG can be achieved by LC/MS/MS analysis if the mobile phase, the inlet (split or splitless), and the collision energy are properly optimized. GC/ECNCI-HRMS and GC/ECNCI-MS/MS analysis of HEV achieves the best performance as compared with GC/ECNCI-MS and GC/EI-MS. In conclusion, future improvements in high-throughput capabilities, detection sensitivity, and resolution of mass spectrometry will attract more scientists to identify and/or quantify novel molecular dosimeters or profiles of these biomarkers in toxicological and/or epidemiological studies.