Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(51): e2211193119, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36520670

RESUMO

An interplay of geometrical frustration and strong quantum fluctuations in a spin-1/2 triangular-lattice antiferromagnet (TAF) can lead to exotic quantum states. Here, we report the neutron-scattering, magnetization, specific heat, and magnetocaloric studies of the recently discovered spin-1/2 TAF Na2BaCo(PO4)2, which can be described by a spin-1/2 easy axis XXZ model. The zero-field neutron diffraction experiment reveals an incommensurate antiferromagnetic ground state with a significantly reduced ordered moment of about 0.54(2) µB/Co. Different magnetic phase diagrams with magnetic fields in the ab plane and along the easy c-axis were extracted based on the magnetic susceptibility, specific heat, and elastic neutron-scattering results. In addition, two-dimensional (2D) spin dispersion in the triangular plane was observed in the high-field polarized state, and microscopic exchange parameters of the spin Hamiltonian have been determined through the linear spin wave theory. Consistently, quantum critical behaviors with the universality class of d = 2 and νz = 1 were established in the vicinity of the saturation field, where a Bose-Einstein condensation (BEC) of diluted magnons occurs. The newly discovered quantum criticality and fractional magnetization phase in this ideal spin-1/2 TAF present exciting opportunities for exploring exotic quantum phenomena.

2.
Phys Rev Lett ; 128(9): 095702, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302822

RESUMO

Coupling of charge and lattice degrees of freedom in materials can produce intriguing electronic phenomena, such as conventional superconductivity where the electrons are mediated by lattice for creating supercurrent. The Mott transition, which is a source for many fascinating emergent behaviors, is originally thought to be driven solely by correlated electrons with an Ising criticality. Recent studies on the known Mott systems have shown that the lattice degree of freedom is also at play, giving rise to either Landau or unconventional criticality. However, the underlying coupling mechanism of charge and lattice degrees of freedom around the Mott critical end point remains elusive, leading to difficulties in understanding the associated Mott physics. Here, we report a study of Mott transition in cubic PbCrO_{3} by measuring the lattice parameter, using high-pressure x-ray diffraction techniques. The Mott criticality in this material is revealed with large lattice anomalies, which is governed by giant viscoelasticity that presumably results from a combination of lattice elasticity and electron viscosity. Because of the viscoelastic effect, the lattice of this material behaves peculiarly near the critical end point, inconsistent with any existing university classes. We argue that the viscoelasticity may play as a hidden degree of freedom behind the Mott criticality.

3.
Nano Lett ; 21(13): 5874-5880, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197120

RESUMO

The magnetic structures of MnBi2Te4(Bi2Te3)n can be manipulated by tuning the interlayer coupling via the number of Bi2Te3 spacer layers n, while the intralayer ferromagnetic (FM) exchange coupling is considered too robust to control. By applying hydrostatic pressure up to 3.5 GPa, we discover opposite responses of magnetic properties for n = 1 and 2. MnBi4Te7 stays at A-type antiferromagnetic (AFM) phase with a decreasing Néel temperature and an increasing saturation field. In sharp contrast, MnBi6Te10 experiences a phase transition from A-type AFM to a quasi-two-dimensional FM state with a suppressed saturation field under pressure. First-principles calculations reveal the essential role of intralayer exchange coupling from lattice compression in determining these magnetic properties. Such magnetic phase transition is also observed in 20% Sb-doped MnBi6Te10 because of the in-plane lattice compression.

4.
Adv Sci (Weinh) ; 10(19): e2205479, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37129311

RESUMO

Nitride perovskite LaWN3 has been predicted to be a promising ferroelectric material with unique properties for diverse applications. However, due to the challenging sample preparation at ambient pressure, the crystal structure of this nitride remains unsolved, which results in many ambiguities in its properties. Here, the authors report a comprehensive study of LaWN3 based on high-quality samples synthesized by a high-pressure method, leading to a definitive resolution of its crystal structure involving nitrogen deficiency. Combined with theoretical calculations, these results show that LaWN3 adopts an orthorhombic Pna21 structure with a polar symmetry, possessing a unique atomic polarization along the c-axis. The associated atomic polar distortions in LaWN3 are driven by covalent hybridization of W: 5d and N: 2p orbitals, opening a direct bandgap that explains its semiconducting behaviors. The structural stability and electronic properties of this nitride are also revealed to be closely associated with its nitrogen deficiency. The success in unraveling the structural and electronic ambiguities of LaWN3 would provide important insights into the structures and properties of the family of nitride perovskites.

5.
Nat Commun ; 12(1): 5559, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548484

RESUMO

Spin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4d/5d-based honeycomb magnets. Recent theoretical studies predicted that 3d-based honeycomb magnets, including Na2Co2TeO6 (NCTO), could also be a potential Kitaev system. Here, we have used a combination of heat capacity, magnetization, electron spin resonance measurements alongside inelastic neutron scattering (INS) to study NCTO's quantum magnetism, and we have found a field-induced spin disordered state in an applied magnetic field range of 7.5 T < B (⊥ b-axis) < 10.5 T. The INS spectra were also simulated to tentatively extract the exchange interactions. As a 3d-magnet with a field-induced disordered state on an effective spin-1/2 honeycomb lattice, NCTO expands the Kitaev model to 3d compounds, promoting further interests on the spin-orbital effect in quantum magnets.

6.
J Phys Chem B ; 110(33): 16404-7, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16913770

RESUMO

The synthesis of novel carbon nanotubes (CNTs) with polygonal cross sections by heating a powder mixture of ferrocene, oxalic acid, and the alkali metal potassium at mediate temperatures (480-500 degrees C) is reported. This kind of special polygonized CNTs has two distinctive characters: first, ribbonlike polygonized CNTs have diameters between 60 and 200 nm, and the lengths as long as several microns; second, the edge of polygonized CNTs is well-graphitized, the wall of which is amorphous. On the basis of evidence that the formation of polygonized CNTs appears to be strongly determined by inhomogeneous catalytic activity of nonspherical Fe(3)O(4) nanoparticles, we propose the possible growth model.

7.
Phys Chem Chem Phys ; 11(19): 3718-26, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19421483

RESUMO

In this work, VO2 nanorods have been initially generated as reactive nanoscale precursors to their subsequent conversion to large quantities of highly crystalline V2O3 with no detectable impurities. Structural changes in VO2, associated with the metallic-to-insulating transition from the monoclinic form to the rutile form, have been investigated and confirmed using X-ray diffraction and synchrotron data, showing that the structural transition is reversible and occurs at around 63 degrees C. When this VO2 one-dimensional sample was subsequently heated to 800 degrees C in a reducing atmosphere, it was successfully transformed into V2O3 with effective retention of its nanorod morphology. We have also collected magnetic and transport data on these systems that are comparable to bulk behavior and consistent with trends observed in previous experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA