Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(16): e2219923120, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040400

RESUMO

The high-valent cobalt-oxo species (Co(IV)=O) is being increasingly investigated for water purification because of its high redox potential, long half-life, and antiinterference properties. However, generation of Co(IV)=O is inefficient and unsustainable. Here, a cobalt-single-atom catalyst with N/O dual coordination was synthesized by O-doping engineering. The O-doped catalyst (Co-OCN) greatly activated peroxymonosulfate (PMS) and achieved a pollutant degradation kinetic constant of 73.12 min-1 g-2, which was 4.9 times higher than that of Co-CN (catalyst without O-doping) and higher than those of most reported single-atom catalytic PMS systems. Co-OCN/PMS realized Co(IV)=O dominant oxidation of pollutants by increasing the steady-state concentration of Co(IV)=O (1.03 × 10-10 M) by 5.9 times compared with Co-CN/PMS. A competitive kinetics calculation showed that the oxidation contribution of Co(IV)=O to micropollutant degradation was 97.5% during the Co-OCN/PMS process. Density functional theory calculations showed that O-doping influenced the charge density (increased the Bader charge transfer from 0.68 to 0.85 e), optimized the electron distribution of the Co center (increased the d-band center from -1.14 to -1.06 eV), enhanced the PMS adsorption energy from -2.46 to -3.03 eV, and lowered the energy barrier for generation of the key reaction intermediate (*O*H2O) during Co(IV)=O formation from 1.12 to 0.98 eV. The Co-OCN catalyst was fabricated on carbon felt for a flow-through device, which achieved continuous and efficient removal of micropollutants (degradation efficiency of >85% after 36 h operation). This study provides a new protocol for PMS activation and pollutant elimination through single-atom catalyst heteroatom-doping and high-valent metal-oxo formation during water purification.

2.
Environ Sci Technol ; 58(3): 1700-1708, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38154042

RESUMO

Ozonation is universally used during water treatment but can form hazardous brominated disinfection byproducts (Br-DBPs). While sunlight exposure is advised to reduce the risk of Br-DBPs, their phototransformation pathways remain insufficiently understood. Here, sunlight irradiation was found to reduce adsorbable organic bromine by 63%. Applying high-resolution mass spectrometry, the study investigated transformations of dissolved organic matter in sunlit-ozonated reclaimed water, revealing the number and abundance of assigned formulas decreased after irradiation. The Br-DBPs with O/C < 0.6 and MW > 400 Da were decreased or removed after irradiation, with the majority being CHOBr compounds. The peak intensity reduction ratio of CHOBr compounds correlated positively with double bound equivalent minus oxygen ratios but negatively with O/C, suggesting that photo-susceptible CHOBr compounds were highly unsaturated. Mass difference analysis revealed that the photodegradation pathways were mainly oxidation aligned with debromination. Three typical CHOBr molecular structures were resolved, and their photoproducts were proposed. Toxicity estimates indicated decreased toxicity in these photoproducts compared to their parent compounds, in line with experimentally determined values. Our proposed phototransformation pathways for Br-DBPs enhance our comprehension of their degradation and irradiation-induced toxicity reduction in reclaimed water, further illuminating their transformation under sunlight in widespread environmental scenarios.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Desinfetantes/análise , Desinfetantes/química , Desinfetantes/toxicidade , Halogenação , Poluentes Químicos da Água/análise , Purificação da Água/métodos
3.
Environ Sci Technol ; 58(26): 11649-11660, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38872439

RESUMO

Brominated byproducts and toxicity generation are critical issues for ozone application to wastewater containing bromide. This study demonstrated that ultraviolet/ozone (UV/O3, 100 mJ/cm2, 1 mg-O3/mg-DOC) reduced the cytotoxicity of wastewater from 14.2 mg of pentol/L produced by ozonation to 4.3 mg of pentol/L (1 mg/L bromide, pH 7.0). The genotoxicity was also reduced from 1.65 to 0.17 µg-4-NQO/L by UV/O3. Compared with that of O3 alone, adsorbable organic bromine was reduced from 25.8 to 5.3 µg/L by UV/O3, but bromate increased from 32.9 to 71.4 µg/L. The UV/O3 process enhanced the removal of pre-existing precursors (highly unsaturated and phenolic compounds and poly aromatic hydrocarbons), while new precursors were generated, yet the combined effect of UV/O3 on precursors did not result in a significant change in toxicity. Instead, UV radiation inhibited HOBr concentration through both rapid O3 decomposition to reduce HOBr production and decomposition of the formed HOBr, thus suppressing the AOBr formation. However, the hydroxyl radical-dominated pathway in UV/O3 led to a significant increase of bromate. Considering both organic bromine and bromate, the UV/O3 process effectively controlled both cytotoxicity and genotoxicity of wastewater to mammalian cells, even though an emphasis should be also placed on managing elevated bromate. Futhermore, other end points are needed to evaluate the toxicity outcomes of the UV/O3 process.


Assuntos
Bromo , Águas Residuárias , Bromo/química , Bromo/toxicidade , Bromatos/química , Processos Fotoquímicos , Raios Ultravioleta , Ozônio/química , Purificação da Água/métodos , Águas Residuárias/toxicidade , Mamíferos , Animais , Células CHO , Cricetulus
4.
Environ Sci Technol ; 58(16): 7113-7123, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38547102

RESUMO

Low-pressure mercury lamps with high-purity quartz can emit both vacuum-UV (VUV, 185 nm) and UV (254 nm) and are commercially available and promising for eliminating recalcitrant organic pollutants. The feasibility of VUV/UV as a chemical-free oxidation process was verified and quantitatively assessed by the concept of H2O2 equivalence (EQH2O2), at which UV/H2O2 showed the same performance as VUV/UV for the degradation of trace organic contaminants (TOrCs). Although VUV showed superior H2O activation and oxidation performance, its performance highly varied as a function of light path length (Lp) in water, while that of UV/H2O2 proportionally decreased with decreasing H2O2 dose regardless of Lp. On increasing Lp from 1.0 to 3.0 cm, the EQH2O2 of VUV/UV decreased from 0.81 to 0.22 mM H2O2. Chloride and nitrate hardly influenced UV/H2O2, but they dramatically inhibited VUV/UV. The competitive absorbance of VUV by chloride and nitrate was verified as the main reason. The inhibitory effect was partially compensated by •OH formation from the propagation reactions of chloride or nitrate VUV photolysis, which was verified by kinetic modeling in Kintecus. In water with an Lp of 2.0 cm, the EQH2O2 of VUV/UV decreased from 0.43 to 0.17 mM (60.8% decrease) on increasing the chloride concentration from 0 to 15 mM and to 0.20 mM (53.5% decrease) at 4 mM nitrate. The results of this study provide a comprehensive understanding of VUV/UV oxidation in comparison to UV/H2O2, which underscores the suitability and efficiency of chemical-free oxidation with VUV/UV.


Assuntos
Peróxido de Hidrogênio , Compostos Orgânicos , Oxirredução , Raios Ultravioleta , Peróxido de Hidrogênio/química , Compostos Orgânicos/química , Fotólise , Poluentes Químicos da Água/química , Nitratos/química
5.
J Environ Sci (China) ; 139: 12-22, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105040

RESUMO

Carbon nitride has been extensively used as a visible-light photocatalyst, but it has the disadvantages of a low specific surface area, rapid electron-hole recombination, and relatively low light absorbance. In this study, single-atom Ag was successfully anchored on ultrathin carbon nitride (UTCN) via thermal polymerization, the catalyst obtained is called AgUTCN. The Ag hardly changed the carbon nitride's layered and porous physical structure. AgUTCN exhibited efficient visible-light photocatalytic performances in the degradation of various recalcitrant pollutants, eliminations of 85% were achieved by visible-light irradiation for 1 hr. Doping with Ag improved the photocatalytic performance of UTCN by narrowing the forbidden band gap from 2.49 to 2.36 eV and suppressing electron-hole pair recombination. In addition, Ag doping facilitated O2 adsorption on UTCN by decreasing the adsorption energy from -0.2 to -2.22 eV and favored the formation of O2·-. Electron spin resonance and radical-quenching experiments showed that O2·- was the major reactive species in the degradation of Acetaminophen (paracetamol, APAP).


Assuntos
Acetaminofen , Poluentes Ambientais , Nitrilas/química , Carbono , Catálise
6.
Environ Sci Technol ; 57(8): 3311-3322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787277

RESUMO

Byproduct formation (chlorate, bromate, organic halogen, etc.) during sulfate radical (SO4•-)-based processes like ultraviolet/peroxymonosulfate (UV/PMS) has aroused widespread concern. However, hypohalous acid (HOCl and HOBr) can form via two-electron transfer directly from PMS, thus leading to the formation of organic halogenated byproducts as well. This study found both PMS alone and UV/PMS can increase the toxicity to mammalian cells of wastewater, while the UV/H2O2 decreased the toxicity. Cytotoxicity of two wastewater samples increased from 5.6-8.3 to 15.7-29.9 mg-phenol/L, and genotoxicity increased from 2.8-3.1 to 5.8-12.8 µg 4-NQO/L after PMS treatment because of organic halogen formation. Organic halogen formation from bromide rather than chloride was found to dominate the toxicity increase. The SO4•--based process UV/PMS led to the formation of both organic halogen and inorganic bromate and chlorate. However, because of the very low concentration (<20 µg/L) and relatively low toxicity of bromate and chlorate, contributions of inorganic byproducts to toxicity increase were negligible. PMS would not form chlorate and bromate, but it generated a higher concentration of total organic halogen, thus leading to a more toxic treated wastewater than UV/PMS. UV/PMS formed less organic halogen and toxicity because of the destruction of byproducts by UV irradiation and the removal of byproduct precursors. Currently, many studies focused on the byproducts bromate and chlorate during SO4•--based oxidation processes. This work revealed that the oxidant PMS even needs more attention because it caused higher toxicity due to more organic halogen formation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Oxidantes , Peróxido de Hidrogênio , Bromatos/toxicidade , Águas Residuárias , Cloratos , Poluentes Químicos da Água/análise , Peróxidos , Oxirredução , Halogênios , Mamíferos
7.
Molecules ; 28(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764308

RESUMO

Lung cancer is one of the most common cancers around the world, with a high mortality rate. Despite substantial advancements in diagnoses and therapies, the outlook and survival of patients with lung cancer remains dismal due to drug tolerance and malignant reactions. New interventional treatments urgently need to be explored if natural compounds are to be used to reduce toxicity and adverse effects to meet the needs of lung cancer clinical treatment. An internalizing arginine-glycine-aspartic acid (iRGD) modified by a tumour-piercing peptide liposome (iRGD-LP-CUR-PIP) was developed via co-delivery of curcumin (CUR) and piperine (PIP). Its antitumour efficacy was evaluated and validated via in vivo and in vitro experiments. iRGD-LP-CUR-PIP enhanced tumour targeting and cellular internalisation effectively. In vitro, iRGD-LP-CUR-PIP exhibited enhanced cellular uptake, suppression of tumour cell multiplication and invasion and energy-independent cellular uptake. In vivo, iRGD-LP-CUR-PIP showed high antitumour efficacy, mainly in terms of significant tumour volume reduction and increased weight and spleen index. Data showed that iRGD peptide has active tumour targeting and it significantly improves the penetration and cellular internalisation of tumours in the liposomal system. The use of CUR in combination with PIP can exert synergistic antitumour activity. This study provides a targeted therapeutic system based on natural components to improve antitumour efficacy in lung cancer.

8.
J Environ Manage ; 315: 115107, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483252

RESUMO

Methylisothiazolinone (MIT) is frequently used as antimicrobial in household and industrial products, and poses ecological and health risks to aquatic organisms and humans. In this study, vacuum ultraviolet (VUV)/ultraviolet (UV) irradiation was found highly efficient for removal of MIT. The rate constant of MIT degradation (kobs) under VUV/UV irradiation was 3.75 µEinstein-1 cm2, which was around 12.5 times higher than that under UV irradiation. The •OH concentration during the VUV/UV process was 1.0 × 10-12 M. The contributions of UV photolysis and •OH oxidation to MIT degradation under VUV/UV irradiation were 7.3% and 92.7%, respectively. The optimum solution pH (6.0-7.1) gave kobs 33%-39% higher than those at pH 3.9 and 9.3. CO32-/HCO3- inhibited MIT degradation and the kobs decreased by 74% when the concentration of CO32-/HCO3- was increased to 1 mM. The order of MIT removal efficiency under VUV/UV irradiation was ultrapure water > secondary effluent > reverse osmosis (RO) concentrate, because of the light screening and •OH quenching effect of actual wastewater. In RO concentrate, the rate constant of MIT degradation under VUV/UV irradiation was 22% higher than that obtained under UV irradiation. The reduction of TOC, UV254, and total fluorescence regional integration of the RO concentrate during VUV/UV process were 7.2%, 34.9%, and 52.3%, respectively. Twelve main transformation products of MIT were identified after VUV/UV degradation. The main degradation mechanisms of MIT were sulfur atom oxidation and hydroxyl addition. Quantitative structure-activity relationship analysis showed that VUV/UV degradation was an efficient method to remove the toxicity of MIT.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Humanos , Peróxido de Hidrogênio/química , Cinética , Oxirredução , Tiazóis , Raios Ultravioleta , Vácuo , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
9.
Environ Sci Technol ; 55(15): 10597-10607, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34296870

RESUMO

Wastewater ozonation forms various toxic byproducts, such as aldehydes, bromate, and organic bromine. However, there is currently no clear understanding of the overall toxicity changes in ozonated wastewater because pretreatment with solid phase extraction cannot retain inorganic bromate and volatile aldehydes, yet contributions of known ozonation byproducts to toxicity are unknown. Moreover, compared with bromate, organic bromine did not receive widespread attention. This study evaluated the toxicity of ozonated wastewater by taking aldehydes, bromate, and organic bromine into consideration. In the absence of bromide, formaldehyde contributed 96-97% cytotoxicity and 92-95% genotoxicity to HepG2 cells among the detected known byproducts, while acetaldehyde, propionaldehyde, and glyoxal had little toxicity. Both formaldehyde and dibromoacetonitrile drove toxicity among the known byproducts when bromide was present. Toxicity assays in HepG2 cells showed that when secondary effluents contained no bromide, the cytotoxicity of the nonvolatile organic fraction (NVOF) was reduced by 56-70%, and genotoxicity was completely removed after ozonation. However, the formed aldehydes (volatile organic fraction, VOF) led to increased overall toxicity. In the presence of bromide, compared with the secondary effluent, ozonation increased the cytotoxicity of the NVOFBr from 3.4-4.0 mg phenol/L to 10.3-13.9 mg phenol/L, possibly due to the formation of organic bromine. In addition, considering the toxicity of VOFBr (VOF in the presence of bromide, including aldehydes, tribromomethane, etc.), the overall cytotoxicity and genotoxicity became much higher than those of the secondary effluent. Although bromate had a limited impact on cytotoxicity and genotoxicity, it caused an increase in oxidative stress in HepG2 cells. Therefore, when taking full account of nonvolatile, volatile, and inorganic fractions, ozonation generally increases the toxicity of wastewater.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Células Hep G2 , Humanos , Ozônio/toxicidade , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
Environ Sci Technol ; 54(14): 8926-8937, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32598842

RESUMO

Ammonia (NH4+) and hydrogen peroxide (H2O2) have been widely used to inhibit bromate formation during ozonation. However, organic byproducts can also pose a risk under these conditions. During bromate inhibition, the influence of NH4+ and H2O2 on organic byproducts and their toxicity should be elucidated. Our study found that NH4+ suppressed organic bromine, but might result in increased toxicity. Adding 0.5 mg/L of NH4+-N substantially increased both the formation of cytotoxicity and genotoxicity (DNA double-strand breaks) of organic byproducts from 0.6 to 1.6 mg-phenol/L, and from 0.3 to 0.8 µg-4-NQO/L (0.5 mg/L Br-, 5 mg/L O3). NH4+ decreased bromate, but increased the overall toxicity of the integrated byproducts (organic byproducts and bromate). Organic nitrogen measurements and 15N isotope analysis showed enhanced incorporation of nitrogen into organic matter when NH4+ and Br- coexisted during ozonation. NH4+ decreased the formation of brominated acetonitriles, but enhanced the formation of brominated nitromethanes and brominated acetamides. These brominated nitrogenous byproducts were partially responsible for this increase in toxicity. Different from ammonia, H2O2 could reduce both bromate and the toxicity of organic byproducts. In the presence of 0.5 mg/L Br- and 10 mg/L O3, adding H2O2 (0.5 mM) substantially suppressed bromate, cytotoxicity formation and genotoxicity formation by 88%, 63% and 67%. This study highlights that focusing on bromate control with NH4+ addition might result in higher toxicity. Efforts are needed to effectively control the toxicities of bromate and organic byproducts simultaneously.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Amônia/toxicidade , Bromatos/toxicidade , Brometos , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
11.
J Environ Manage ; 237: 180-186, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30784866

RESUMO

Reverse osmosis (RO) technology plays an increasingly important role in municipal wastewater reclamation. However, the antiscalants used in RO systems showed adverse effects to the ecosystem: impending the removal of hardness from RO concentrates; inducing phosphorus pollution in receiving water; enhancing the trace metal migration in the environment. In this study, UV/chlorine advanced oxidation process was used to oxidize a typical phosphoric antiscalant (1-Hydroxyethane-1, 1-diphosphonic Acid, HEDP). UV/chlorine showed significant synergetic effects on HEDP degradation compared to UV irradiation or chlorination alone. Compared to UV/H2O2 oxidation, UV/chlorine process is more efficient for HEDP transformation with chlorine dosages ranging from 0.1 to 0.4 mmoL/L. Chorine dosage showed dual effects on HEDP oxidation by UV/chlorine: the increasing trend of transformation efficiency of HEDP got slower with increasing chlorine dosage. The transformation efficiency of HEDP by UV/chlorine oxidation decreased from 39% to 14% with pH increasing from 4.5 to 9.0, likely due to the higher quantum yields and lower radical quenching rates of HOCl than those of OCl-. The transformation efficiency of HEDP decreased 14% and 42% with 30 mM of chloride and bicarbonate, respectively. The presence of nitrate promoted the oxidation of HEDP by UV/chlorine: the transformation efficiency increased 5% and 83% with the presence of 5 mM and 30 mM nitrate, respectively. Based on the static scale inhibition tests, UV/chlorine oxidation is effective at removing the scale inhibition ability of HEDP. During UV/chlorine process, the maximum scale inhibition ratio decreased from 66% to 34% as the removal of phosphonate ligand from HEDP increased to 80%.


Assuntos
Organofosfonatos , Poluentes Químicos da Água , Purificação da Água , Cloro , Ecossistema , Peróxido de Hidrogênio , Osmose , Oxirredução , Fósforo , Raios Ultravioleta
12.
J Environ Sci (China) ; 58: 51-63, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28774626

RESUMO

Chlorination is essential to the safety of reclaimed water; however, this process leads to concern regarding the formation of disinfection byproducts (DBPs) and toxicity. This study reviewed the formation and control strategies for DBPs and toxicity in reclaimed water during chlorination. Both regulated and emerging DBPs have been frequently detected in reclaimed water during chlorination at a higher level than those in drinking water, indicating they pose a greater risk to humans. Luminescent bacteria and Daphnia magna acute toxicity, anti-estrogenic activity and cytotoxicity generally increased after chlorination because of the formation of DBPs. Genotoxicity by umu-test and estrogenic activity were decreased after chlorination because of destruction of toxic chemicals. During chlorination, water quality significantly impacted changes in toxicity. Ammonium tended to attenuate toxicity changes by reacting with chlorine to form chloramine, while bromide tended to aggravate toxicity changes by forming hypobromous acid. During pretreatment by ozonation and coagulation, disinfection byproduct formation potential (DBPFP) and toxicity formation potential (TFP) occasionally increase, which is accompanied by DOC removal; thus, the decrease of DOC was limited to indicate the decrease of DBPFP and TFP. It is more important to eliminate the key fraction of precursors such as hydrophobic acid and hydrophilic neutrals. During chlorination, toxicities can increase with the increasing chlorine dose and contact time. To control the excessive toxicity formation, a relatively low chlorine dose and short contact time were required. Quenching chlorine residual with reductive reagents also effectively abated the formation of toxic compounds.


Assuntos
Desinfetantes/análise , Purificação da Água/métodos , Animais , Desinfetantes/toxicidade , Desinfecção/métodos , Halogenação , Humanos , Poluentes Químicos da Água
13.
J Environ Manage ; 183(Pt 3): 1064-1071, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27692888

RESUMO

Methylisothiazolone (MIT) is a common biocide that is widely used in water-desalination reverse-osmosis processes. The transformation of MIT during water treatment processes is poorly understood. The kinetics and mechanisms involved in the degradation of MIT during ozonation were investigated in this study. Ozonation was found to be a useful way of degrading MIT in water, and the degradation rate constant was 0.11 (±0.1) × 103 L/(mol·s). The degradation rate constant did not change when the pH was increased from 3 to 9. The pre-exponential factor A and the activation energy Ea for the ozonation process were 7.564 × 1013 L/(mol·s) and 66.74 kJ/mol, respectively. The decrease in the MIT concentration and the amount of ozone consumed were measured, and the stoichiometric factor α for the ozone consumption to MIT removal ratio was found to be 1.8. Several ozonation products were detected using time-of-flight mass spectrometry. Almost 32% of the organic sulfur in the MIT was oxidized to release sulfate ions, which caused a decrease in pH. Sulfur atoms were oxidized to sulfone species and then hydrolyzed to give sulfate during ozonation. Addition reactions involving carbon-carbon double bonds and the oxidation of α-carbon atoms also occurred. MIT was found to be lethal to Daphnia magna Straus (D. magna) with a median lethal concentration of 18.2 µmol/L. Even though the primary ozonation products of MIT still showed some toxicity to D. magna, ozone could minimize the toxic effect after a long reaction time.


Assuntos
Desinfetantes/química , Ozônio/química , Tiazóis/química , Tiazóis/toxicidade , Purificação da Água/métodos , Daphne/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Temperatura , Testes de Toxicidade/métodos , Água/química , Poluentes Químicos da Água/química
14.
Water Sci Technol ; 73(6): 1243-52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27003063

RESUMO

Urban wastewater treatment plant (WWTP) effluent as reclaimed water provides an alternative water resource for urban rivers and effluent will pose a significant influence on the water quality of rivers. The objective of this study was to investigate the spatial and temporal variations of water quality in XZ River, an artificial urban river in Shenzhen city, Guangdong Province, China, after receiving reclaimed water from WWTP effluent. The water samples were collected monthly at different sites of XZ River from April 2013 to September 2014. Multivariate statistical techniques and a box-plot were used to assess the variations of water quality and to identify the main pollution factor. The results showed the input of WWTP effluent could effectively increase dissolved oxygen, decrease turbidity, phosphorus load and organic pollution load of XZ River. However, total nitrogen and nitrate pollution loads were found to remain at higher levels after receiving reclaimed water, which might aggravate eutrophication status of XZ River. Organic pollution load exhibited the lowest value on the 750 m downstream of XZ River, while turbidity and nutrient load showed the lowest values on the 2,300 m downstream. There was a higher load of nitrogen and phosphorus pollution in the dry season and at the beginning of wet season.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Qualidade da Água , China , Cidades , Eutrofização , Nitratos , Nitrogênio/análise , Oxigênio , Fósforo/análise , Estações do Ano , Eliminação de Resíduos Líquidos/métodos
15.
J Environ Sci (China) ; 41: 227-234, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26969069

RESUMO

Azo dyes are commonly found as pollutants in wastewater from the textile industry, and can cause environmental problems because of their color and toxicity. The removal of a typical azo dye named C.I. Reactive Red 2 (RR2) during low pressure ultraviolet (UV)/chlorine oxidation was investigated in this study. UV irradiation at 254nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone. Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation. Experiments performed with nitrobenzene (NB) or benzoic acid (BA) as scavengers showed that radicals (especially OH) formed during UV/chlorine oxidation are important in the RR2 removal. Addition of HCO3(-) and Cl(-) to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation.


Assuntos
Corantes/química , Halogenação , Naftalenossulfonatos/química , Triazinas/química , Raios Ultravioleta , Poluentes Químicos da Água/química , Cloro/química , Oxirredução , Pressão
16.
J Environ Sci (China) ; 43: 118-127, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27155416

RESUMO

Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter (DOM) was investigated in this study. Solar light significantly decreased the UV254 absorbance and fluorescence (FLU) intensity of reclaimed water. However, its effect on the dissolved organic carbon (DOC) value of reclaimed water was very limited. The decrease in the UV254 absorbance intensity and FLU excitation-emission matrix regional integration volume (FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV254 absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV254 absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV254 and FLU intensity were independent of light intensity. The peaks of the UV254 absorbance and FLU intensity with an apparent molecular weight (AMW) of 100Da to 2000Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change.


Assuntos
Poluentes Químicos da Água/análise , Purificação da Água/métodos , Fluorescência , Processos Fotoquímicos , Luz Solar , Raios Ultravioleta , Poluentes Químicos da Água/química
18.
Ecotoxicol Environ Saf ; 122: 490-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26410194

RESUMO

Biological tests are effective and comprehensive methods to assess toxicity of environmental pollutants to ensure the safety of reclaimed water. In this study, the canonical MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed to evaluate the cytotoxicity of dissolved organic matters (DOMs) of secondary effluents from wastewater treatment plants (WWTPs). It was surprising that most concentrated DOMs treated HepG2 cells yielded much higher signal compared with vehicle control regardless of difference of treatment technologies and seasons. However, there was actually no obvious enhancement of the cell proliferation by microscopy. In order to find out potential reason for the discrepancy, another three assays were performed. The results of ATP assay and flow cytometry showed expected toxicity, which was consistent with microscopy and previous studies, while DNA assay did not exhibit apparent change in treated cells. The possible mechanisms of abnormal MTT signal could be that some materials in secondary effluents isolated by solid extraction with HLB resin directly reacted with MTT and/or enhanced the activity of mitochondrial dehydrogenase. Therefore, the MTT assay is not suitable to assess cytotoxicity of complex mixtures such as secondary effluents, while ATP assay is an optional sensitive method. This study also suggests the importance of choosing both suitable extraction methods and detection assays for toxicity evaluation of component-unknown environmental samples.


Assuntos
Trifosfato de Adenosina/análise , Bioensaio/métodos , Sais de Tetrazólio/química , Tiazóis/química , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Purificação da Água , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Células Hep G2 , Humanos , Sensibilidade e Especificidade , Águas Residuárias/análise , Poluentes Químicos da Água/análise
19.
J Environ Manage ; 162: 326-33, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26265601

RESUMO

This investigation evaluated the adsorption behavior of the antiviral drugs of oseltamivir (OE) and its metabolites (i.e., oseltamivir carboxylate (OC)) on three types of carbon nanotubes (CNTs) including single-walled CNT (SWCNT), multi-walled CNT (MWCNT), and carboxylated SWCNT (SWCNT-COOH). CNTs can efficiently remove more than 90% of the OE and OC from aqueous solution when the initial concentration was lower than 10(-4) mmol/L. The Polanyi-Manes model depicted the adsorption isotherms of OE and OC on CNTs better than the Langmuir and Freundlich models. The properties of OE/OC and the characteristics of CNTs, particularly the oxygen functional groups (e.g., SWCNT-COOH) played important roles during the adsorption processes. OE showed a higher adsorption affinity than OC. By comparing the different adsorbates adsorption on each CNT and each adsorbate adsorption on different CNTs, the adsorption mechanisms of hydrophobic interaction, electrostatic interaction, van der Waals force, and H-bonding were proposed as the contributing factors for OE and OC adsorption on CNTs. Particularly, for verifying the contribution of electrostatic interaction, the changes of adsorption partition efficiency (Kd) of OE and OC on CNTs were evaluated by varying pH from 2 to 11 and the importance of isoelectric point (pHIEP) of CNTs on OE and OC adsorption was addressed.


Assuntos
Antivirais/química , Poluentes Ambientais/química , Nanotubos de Carbono/química , Oseltamivir/análogos & derivados , Adsorção , Ácidos Carboxílicos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Oseltamivir/química
20.
Water Sci Technol ; 70(12): 1934-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25521127

RESUMO

1,4-Dioxane is a probable human carcinogenic and refractory substance that is widely detected in aquatic environments. Traditional wastewater treatment processes, including activated sludge, cannot remove 1,4-dioxane. Removing 1,4-dioxane with a reaction kinetic constant of 0.32 L/(mol·s) by using ozone, a strong oxidant, is difficult. However, under alkaline environment, ozone generates a hydroxyl radical (•OH) that exhibits strong oxidative potential. Thus, the ozonation of 1,4-dioxane in water under different pH conditions was investigated in this study. In neutral solution, with an inlet ozone feed rate of 0.19 mmol/(L·min), the removal efficiency of 1,4-dioxane was 7.6% at 0.5 h, whereas that in alkaline solution was higher (16.3-94.5%) within a pH range of 9-12. However, the removal efficiency of dissolved organic carbon was considerably lower than that of 1,4-dioxane. This result indicates that several persistent intermediates were generated during 1,4-dioxane ozonation. The pseudo first-order reaction further depicted the reaction of 1,4-dioxane. The obvious kinetic constants (kobs) at pH 9, 10, 11 and 12 were 0.94, 2.41, 24.88 and 2610 L/(mol·s), respectively. Scavenger experiments on radical species indicated that •OH played a key role in removing 1,4-dioxane during ozonation under alkaline condition.


Assuntos
Dioxanos/química , Ozônio/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Radical Hidroxila , Cinética , Oxidantes , Oxirredução , Águas Residuárias , Água , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA