RESUMO
MAIN CONCLUSION: TabZIP60 is found to interact with TaCDPK30 and act as a positive regulator of ABA synthesis-mediated salt tolerance in wheat. Wheat basic leucine zipper (bZIP) transcription factor (TabZIP60) was previously found to act as a positive regulator of salt resistance. However, its molecular mechanism in response to salt stress in wheat is still unclear. In this study, TabZIP60 was found to interact with wheat calcium-dependent protein kinase (TaCDPK30), which belonged to group III of CDPK family, and was induced by salt, polyethylene glycol, and abscisic acid (ABA) treatments. This mutation of serine 110 in TabZIP60 resulted in no interaction with TaCDPK30. Moreover, TaCDPK30 was involved in interactions with wheat protein phosphatase 2C clade A (TaPP2CA116/TaPP2CA121). TabZIP60-overexpressing wheat plants showed increased salt tolerance, as exhibited by better growth status, higher soluble sugar, and lower malonaldehyde contents of transgenic plants than wild-type wheat cv. Kenong 199 under salt stress. Moreover, transgenic lines showed high ABA content by upregulating ABA synthesis-related gene expression levels. TabZIP60 protein could bind and interact with the promoter of the wheat nine-cis epoxycarotenoid dioxygenase (TaNCED2) gene. Furthermore, TabZIP60 upregulated several stress response gene expression levels, which could also increase the plant's ability to resist salt stress. Thus, these results suggest that TabZIP60 could function as a regulator of ABA synthesis-mediated salt tolerance through interacting with TaCDPK30 in wheat.
Assuntos
Tolerância ao Sal , Triticum , Triticum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Estresse Fisiológico/genéticaRESUMO
Osmotic stress is one of the main stresses seriously affects the growth and development of plants. Hydrogen sulfide (H2S) emerges as the third gaseous signal molecule to involve in the complex network of signaling events. Phospholipase Dδ (PLDδ), as signal enzyme, responds to many biotic or abiotic stress responses. In this study, the functions and the relationship of PLDδ and H2S in stomatal closure induced by osmotic stress were explored. Using the seedlings of ecotype (WT), PLDδ deficient mutant (pldδ), L-cysteine desulfhydrase (LCD) deficient mutant (lcd) and pldδlcd double mutant as materials, the Real-time quantitative PCR (RT-qPCR) and the stomatal aperture were analyzed. Osmotic stress induced the expressions of PLDδ and LCD. The H2S content and the activities of PLD and LCD ascended in WT under osmotic stress. The phenotypes of pldδ, lcd and pldδlcd were more sensitive to osmotic stress than WT. Compared with pldδ, the stomatal of lcd showed lower sensitivity to osmotic stress, and the stomatal aperture of pldδlcd was similar to that of lcd. Simultaneous application of PA and NaHS resulted in tighter closure of stomatal than application of either PA or NaHS alone. These results suggested that osmotic stress-triggered stomatal closure requires PLDδ and H2S in A. thaliana. LCD acted downstream of PLDδ to regulate the stomatal closure induced by osmotic stress.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Sulfeto de Hidrogênio/metabolismo , Fosfolipase D/metabolismo , Estômatos de Plantas/fisiologia , Pressão OsmóticaRESUMO
ZnCdHgSe quantum dots (QDs) functionalized with N-acetyl-l-cysteine were synthesized and characterized. Through layer-by-layer assembling, the ZnCdHgSe QDs was integrated with a polymerized 1-decyl-3-[3-pyrrole-1-yl-propyl]imidazolium tetrafluoroborate (PDPIT) ionic liquid film modified indium tin oxide (ITO) electrode to fabricated a photoelectrochemical interface for the immobilization of rabbit antihuman neuron specific enolase (anti-NSE). After being treated with glutaraldehyde vapor and bovine serum albumin successively, an anti-NSE/ZnCdHgSe QDs/PDPIT/ITO sensing platform was established. Simplely using a white-light LED as an excitation source, the immunoassay of neuron specific enolase (NSE) was achieved through monitoring the photocurrent variation. The polymerized ionic liquid film was demonstrated to be an important element to enhance the photocurrent response of ZnCdHgSe QDs. The anti-NSE/ZnCdHgSe QDs/PDPIT/ITO based immunosensor presents excellent performances in neuron specific enolase determination. The photocurrent variation before and after being interacted with NSE exhibits a good linear relationship with the logarithm of its concentration (log cNSE) in the range from 1.0 pg mL(-1) to 100 ng mL(-1). The limit of detection of this immunosensor is able to reach 0.2 pg mL(-1) (S/N = 3). The determination of NSE in clinical human sera was also demonstrated using anti-NSE/ZnCdHgSe QDs/PDPIT/ITO electrode. The results were found comparable with those obtained by using enzyme-linked immunosorbent assay method.
Assuntos
Complexos de Coordenação/química , Técnicas Eletroquímicas , Imunoensaio , Líquidos Iônicos/química , Luz , Fosfopiruvato Hidratase/análise , Pontos Quânticos , Animais , Cádmio/química , Mercúrio/química , Fosfopiruvato Hidratase/metabolismo , Processos Fotoquímicos , Polimerização , Coelhos , Selênio/química , Zinco/químicaRESUMO
Winter rapeseed (Brassica rapa) has a good chilling and freezing tolerance. inducer of CBF expression 1 (ICE1) plays a crucial role in cold signaling in plants; however, its role in Brassica rapa remains unclear. In this study, we identified 41 ICE1 homologous genes from six widely cultivated Brassica species. These genes exhibited high conservation, with evolutionary complexity between diploid and allotetraploid species. Cold stress induced ICE1 homolog expression, with differences between strongly and weakly cold-tolerant varieties. Two novel ICE1 paralogs, BrICE1 and BrICE2, were cloned from Brassica rapa Longyou 6. Subcellular localization assays showed that they localized to the nucleus, and low temperature did not affect their nuclear localization. The overexpression of BrICE1 and BrICE2 increased cold tolerance in transgenic Arabidopsis and enhanced reactive oxygen species' (ROS) scavenging ability. Furthermore, our data demonstrate that overexpression of BrICE1 and BrICE2 inhibited root growth in Arabidopsis, and low temperatures could induce the degradation of BrICE1 and BrICE2 via the 26S-proteasome pathway. In summary, ICE1 homologous genes exhibit complex evolutionary relationships in Brassica species and are involved in the C-repeat/DREB binding factor (CBF) pathway and ROS scavenging mechanism in response to cold stress; these regulating mechanisms might also be responsible for balancing the development and cold defense of Brassica rapa.
RESUMO
A novel enzyme-free and all-carbon photoelectrochemical (PEC) bioprobe, based on carboxylated multiwalled carbon nanotube-Congo red-fullerene nanohybrids (MWNTCOOH-CR-C60), for the ultrasensitive immunosensing of carcinoembryonic antigen (CEA) was reported. The MWNTCOOH-CR-C60 nanohybrids, prepared by mechanically grinding a mixture of MWNTCOOH, C60, and CR at a certain mass ratio, had good water dispersibility and high PEC conversion efficiency in visible light ranges. Covalent binding of the detection antibody of CEA on the MWNTCOOH-CR-C60 nanohybrids produced a sensitive PEC bioprobe for detection of CEA by sandwich immunosensing. The corresponding immunosensor, employing an inexpensive and portable green laser light, possessed a wide calibration range of 1.0 pg/mL~100.0 ng/mL and a low detection limit of 0.1 pg/mL (calculated 5 zmol for a 10.0 µL sample solution) (S/N = 3), which was successfully applied to the detection of CEA in serum samples from both healthy people and cancer patients. The present work thus demonstrated the promising application of fullerene-based nanocomposites in developing highly sensitive, environmentally friendly, and cost-effective PEC biosensors.
Assuntos
Biomarcadores Tumorais/análise , Carbono/química , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Lasers , Sondas Moleculares , Fotoquímica , Humanos , Limite de Detecção , Microscopia Eletrônica de TransmissãoRESUMO
The MYB (v-Myb avivan myoblastsis virus oncogene homolog) transcription factor family is one of the largest families of plant transcription factors which plays a vital role in many aspects of plant growth and development. MYB-related is a subclass of the MYB family. Fifty-nine Arabidopsis thaliana MYB-related (AtMYB-related) genes have been identified. In order to understand the functions of these genes, in this review, the promoters of AtMYB-related genes were analyzed by means of bioinformatics, and the progress of research into the functions of these genes has been described. The main functions of these AtMYB-related genes are light response and circadian rhythm regulation, root hair and trichome development, telomere DNA binding, and hormone response. From an analysis of cis-acting elements, it was found that the promoters of these genes contained light-responsive elements and plant hormone response elements. Most genes contained elements related to drought, low temperature, and defense and stress responses. These analyses suggest that AtMYB-related genes may be involved in A. thaliana growth and development, and environmental adaptation through plant hormone pathways. However, the functions of many genes do not occur independently but instead interact with each other through different pathways. In the future, the study of the role of the gene in different pathways will be conducive to a comprehensive understanding of the function of the gene. Therefore, gene cloning and protein functional analyses can be subsequently used to understand the regulatory mechanisms of AtMYB-related genes in the interaction of multiple signal pathways. This review provides theoretical guidance for the follow-up study of plant MYB-related genes.
Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Seguimentos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , OncogenesRESUMO
EIN3-binding F-box 1 (EBF1) is involved in cold tolerance in Arabidopsis; however, its exact roles in cold signaling in Brassica rapa remain uncertain. Herein, we demonstrated that EBF1 homologs are highly conserved in Brassica species, but their copy numbers are diverse, with some motifs being species specific. Cold treatment activated the expression of EBF1 homologs BrEBF1 and BrEBF2 in B. rapa; however, their expression schemas were diverse in different cold-resistant varieties of the plant. Subcellular localization analysis revealed that BrEBF1 is a nuclear-localized F-box protein, and cold treatment did not alter its localization but induced its degradation. BrEBF1 overexpression enhanced cold tolerance, reduced cold-induced ROS accumulation, and enhanced MPK3 and MPK6 kinase activity in Arabidopsis. Our study revealed that BrEBF1 positively regulates cold tolerance in B. rapa and that BrEBF1-regulated cold tolerance is associated with ROS scavenging and MPK3 and MPK6 kinase activity through the C-repeat binding factor pathway.
Assuntos
Arabidopsis , Brassica rapa , Brassica , Brassica rapa/genética , Arabidopsis/genética , Espécies Reativas de Oxigênio , Especificidade da EspécieRESUMO
Plant somatic embryogenesis receptor-like kinases (SERK), members of leucine-rich repeat receptor-like kinases (LRR-RLKs) subfamily, are widely involved in plant growth, development and innate immunity. In this study, the setaria italica somatic embryogenesis receptor-like kinase1 gene (SiSERK1) was cloned by gateway technology, and transferred into a brasssinosteroid (BR) receptor mutant of Arabidopsis thaliana WS2 (bri1-5). After BL treatment, the transgenic plants could partially restore the phenotype of bri1-5. After Pst DC3000 treatment, the CFU value of SiSERK1 overexpression plant pathogen was between WS2 and bri1-5. Stomatal opening and plant height were also between them. Therefore, it is speculated that SiSERK1 gene is involved in BR signaling pathway and can improve the resistance of bri1-5 to Pst DC3000 through SA and NHP mediated systemic acquired resistance (SAR).
Assuntos
Proteínas de Arabidopsis/genética , Proteínas Quinases/genética , Setaria (Planta)/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Clonagem Molecular/métodos , Fenótipo , Técnicas de Embriogênese Somática de Plantas/métodos , Plantas Geneticamente Modificadas , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Setaria (Planta)/metabolismo , Transdução de Sinais/genéticaRESUMO
Early Responsive to Dehydration (ERD) genes are rapidly induced in response to various biotic and abiotic stresses, such as bacteria, drought, light, temperature and high salt in Arabidopsis thaliana. Sixteen ERD of Arabidopsis thaliana (AtERD) genes have been previously identified. The lengths of the coding region of the genes are 504-2838 bp. They encode 137-745 amino acids. In this study, the AtERD genes structure and promoter are analyzed through bioinformatics, and a overall function is summarized and a systematic signal pathway involving AtERD genes is mapped. AtERD9, AtERD11 and AtERD13 have the GST domain. AtERD10 and AtERD14 have the Dehyd domain. The promoters regions contain 32 light responsive elements, 23 ABA responsive elements, 5 drought responsive elements, 5 meristem expression related elements and 132 core promoter elements. The study provides a theoretical guidance for subsequent studies of AtERD genes.
RESUMO
Winter rapeseed (Brassica rapa L.) is an important oilseed crop in northwest China. Freezing stress severely limits its production and geographical distribution, and frequent extreme freezing events caused by climate change are increasing the chances of winter freeze-injury. However, the underlying mechanism of B. rapa response to freezing stress remains elusive. Here, B. rapa genome (v3.0) was used as a reference for the comparative transcriptomic analysis of Longyou 6 and Tianyou 2 (strong and weak cold tolerance, respectively) under different freezing stress. Before and after freezing stress, 5,982 and 11,630 unique differentially expressed genes (DEGs) between two cultivars were identified, respectively. After freezing stress, the GO terms in Tianyou 2 were mainly involved in "macromolecule biosynthetic process", and those in Longyou 6 were involved in "response to stimulus" and "oxidoreductase activity". Morphological and physiological results indicated that Longyou 6 retained a higher basal freezing resistance than Tinayou 2, and that cold acclimation could strengthen the basal freezing resistance. Freezing stress could activate the MAPK signal cascades, and the phosphorylation level of Longyou 6 showed a higher increase in response to freezing treatment than Tianyou 2. Based on our findings, it was speculated that the cell membrane of B. rapa perceives external signals under freezing stress, which are then transmitted to the nucleus through the cold-activated MAPK cascades and Ca2+-related protein kinase pathway, thus leading to activation of downstream target genes to enhance the freezing resistance of B. rapa.
RESUMO
Arabidopsis K+-efflux antiporter (KEA)1 and KEA2 are chloroplast inner envelope membrane K+/H+ antiporters that play an important role in plastid development and seedling growth. However, the function of KEA1 and KEA2 during early seedling development is poorly understood. In this work, we found that in Arabidopsis, KEA1 and KEA2 mediated primary root growth by regulating photosynthesis and the ABA signaling pathway. Phenotypic analyses revealed that in the absence of sucrose, the primary root length of the kea1kea2 mutant was significantly shorter than that of the wild-type Columbia-0 (Col-0) plant. However, this phenotype could be remedied by the external application of sucrose. Meanwhile, HPLC-MS/MS results showed that in sucrose-free medium, ABA accumulation in the kea1kea2 mutant was considerably lower than that in Col-0. Transcriptome analysis revealed that many key genes involved in ABA signals were repressed in the kea1kea2 mutant. We concluded that KEA1 and KEA2 deficiency not only affected photosynthesis but was also involved in primary root growth likely through an ABA-dependent manner. This study confirmed the new function of KEA1 and KEA2 in affecting primary root growth.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Raízes de Plantas/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo , Sacarose/metabolismo , Espectrometria de Massas em TandemRESUMO
The abnormal expression of HPV16 E6/E7 activates oncogenes and/or inactivates tumor suppressor genes, resulting in the selective growth and malignant transformation of cancer cells. miR-4454 was selected by sequencing due to its abnormal high expression in HPV16 E6/E7 positive CaSki cell compared with HPV16 E6/E7 negative C33A cell. Overexpression of miR-4454 enhances cervical cancer cell invasion and migration. ABHD2 and NUDT21 are identified as a target gene of miR-4454.The effects of ABHD2 and NUDT21 on migration and invasion of CaSki and C33A cells were determined. The dual luciferase and RT-qPCR assays confirmed that miR-4454 might regulate its targets ABHD2 and NUDT21 to promote the proliferation, invasion and migration, whereas, inhibit the apoptosis in CaSki and C33A cells.
Assuntos
MicroRNAs/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hidrolases/genética , Hidrolases/metabolismo , MicroRNAs/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Proteínas Repressoras/genética , Regulação para Cima , Neoplasias do Colo do Útero/genéticaRESUMO
The sensitive and label-free detection of multiple biomarkers on a single electrode by photoelectrochemical (PEC) sensors based on light addressing strategies is very attractive for developing portable and high-throughput biosensing systems. The essential prerequisite of this proposal is the employment of uniform photovoltaic material modified electrodes with high conversion efficiency. Herein, a novel two-step constant potential deposition method for the rapid fabrication of bismuth sulfide film modified ITO electrodes (Bi2S3/ITO) was established. The produced Bi2S3/ITO, with excellent uniformity and high conversion efficiency in visible light ranges, was further modified with gold nanoparticles (AuNPs) and then divided into separated identical sensing zones by insulative paints. The adsorption-based immobilization of antibodies of three tumor markers, i.e., a-fetoprotein (AFP), carcinoembryonic antigen (CEA) and cancer antigen 19-9 (CA19-9), onto different sensing zones of the electrode and the further blocking with BSA established a label-free and light-addressable PEC sensor (LF-LAPECS), which can achieve the rapid and sensitive detection of these biomarkers with wide linear ranges, low detection limits and self-calibration ability. Moreover, the detection throughput can be conveniently improved by enlarging the size of the substrate electrode and increasing the number of separated sensing zones. The present work thus demonstrates the promising applications of PEC techniques for developing sensitive, time-saving, cost-effective and high-throughput biosensing methods.
Assuntos
Técnicas Biossensoriais/instrumentação , Bismuto/química , Antígeno CA-19-9/sangue , Antígeno Carcinoembrionário/sangue , Técnicas Eletroquímicas/instrumentação , Sulfetos/química , alfa-Fetoproteínas/análise , Anticorpos Imobilizados/química , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Luz , Limite de Detecção , Neoplasias/sangue , Neoplasias/diagnósticoRESUMO
In plants, LRR-RLKs play central roles in regulating perception of extracellular signals and initiation of cellular responses under various environmental challenges. Arabidopsis SERK genes, including SERK1 to SERK5, constitute a LRR-RLK sub-family. SERK1, SERK2, SERK3/BAK1, and SERK4/BKK1 have been well characterized to function as crucial regulators in multiple physiological processes such as brassinosteroid signaling, cell death control, pathogenesis, and pollen development. Despite extremely high sequence identity with BKK1, SERK5 is reported to have no functional overlapping with BKK1, which is previously identified to regulate BR and cell death control pathways, probably due to a natural mutation in a highly conserved RD motif in the kinase domain of SERK5 in Col-0 ecotype. Through a gene sequencing analysis in several Arabidopsis accessions, we are able to identify SERK5 in Landsberg erecta (Ler) genome encoding a LRR-RLK with an intact RD motif. Overexpression of SERK5-Ler partially suppresses the BR defective phenotypes of bri1-5 and bak1-3 bkk1-1, indicating SERK5-Ler functions as a positive regulator in BR signaling. Furthermore, the interaction between SERK5-Ler and BRI1 is confirmed by yeast two-hybrid and BiFC assays, and the genetic result showing that elevated expression of a kinase-dead form of SERK5-Ler causes a dominant-negative phenotype in bri1-5. In addition, overexpression of SERK5-Ler is capable of delaying, not completely suppressing, the cell death phenotype of bak1-3 bkk1-1. In this study, we first reveal that SERK5-Ler is a biologically functional component in mediating multiple signaling pathways.