Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 42(7): 1261-1264, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362744

RESUMO

A conventional optical zoom system is bulky, expensive, and complicated for real-time adjustment. Recent progress in metasurface research has provided a new solution to achieve innovative compact optical systems. In this Letter, we propose a highly integrated step-zoom lens with dual field of view (FOV) based on double-sided metasurfaces. With silicon nanobrick arrays of spatially varying orientations sitting on both sides of a transparent substrate, this ultrathin step-zoom metalens can be designed to focus an incident circular polarized beam with handedness-dependent FOVs without varying the focal plane, which is important for practical applications. The proposed dual FOV step-zoom metalens, with advantages such as ultracompactness, flexibility, and replicability, can find applications in fields that require ultracompact zoom imaging and beam focusing.

2.
Sci Rep ; 13(1): 19160, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932324

RESUMO

The research into the prevention of sports injuries among the population, particularly juveniles, has become crucial due to the increasing participation in physical exercises like fitness. To assess the difference in T2 values of ankle talar cartilage between weightlifters and healthy volunteers using quantitative magnetic resonance imaging (MRI) technique T2 mapping. Study design: Prospective. Prospective evaluation of T2 values of ankle cartilage of 50 weightlifters (30 adults and 20 juveniles) and 100 healthy volunteers (80 adults and 20 juveniles) using Siemens 3.0 T MRI with PDWI, T1WI, and T2 mapping sequences. Three physicians manually divided the talar cartilage of the ankle joint into six regions of interest. Three physicians utilized the anterior and posterior cut edges of the tibial cartilage as markers to identify the corresponding anterior and posterior cut edges of the talar cartilage on the sagittal MRI images. The medial and lateral sides were defined as half of the talar articular surface on the coronal plane. Differences in T2 values in each cartilage region were compared using independent sample T test or Mann-Whitney U test. The T2 values of talar cartilage were significantly increased in the athlete group relative to the volunteer group (35.11 and 31.99, P < 0.001), with the most significant difference observed in the juvenile athlete group compared to the volunteer group (34.42 and 28.73, P < 0.001). There was a significant difference in the T2 value of ankle talar cartilage between weightlifters and healthy volunteers, and juveniles may be more vulnerable to overuse sports injuries. This study contributes to understanding the cartilage health of juvenile athletes and the prevention of sports injuries.


Assuntos
Traumatismos em Atletas , Cartilagem Articular , Adulto , Humanos , Articulação do Tornozelo , Tornozelo , Traumatismos em Atletas/patologia , Cartilagem Articular/patologia , Tíbia , Imageamento por Ressonância Magnética/métodos
3.
Front Endocrinol (Lausanne) ; 14: 1127336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113490

RESUMO

Introduction: MiR-196a2 and miR-27a play a key role in the regulation of the insulin signaling pathway. Previous studies have indicated that miR-27a rs895819 and miR-196a2 rs11614913 have a strong association with type 2 diabetes (T2DM), but very few studies have investigated their role in gestational diabetes mellitus (GDM). Methods: A total of 500 GDM patients and 502 control subjects were enrolled in this study. Using the SNPscan™ genotyping assay, rs11614913 and rs895819 were genotyped. In the data treatment process, the independent sample t test, logistic regression and chi-square test were used to evaluate the differences in genotype, allele, and haplotype distributions and their associations with GDM risk. One-way ANOVA was conducted to determine the differences in genotype and blood glucose level. Results: There were obvious differences in prepregnancy body mass index (pre-BMI), age, systolic blood pressure (SBP), diastolic blood pressure (DBP) and parity between GDM and healthy subjects (P < 0.05). After adjusting for the above factors, the miR-27a rs895819 C allele was still associated with an increased risk of GDM (C vs. T: OR=1.245; 95% CI: 1.011-1.533; P = 0.039) and the TT-CC genotype of rs11614913-rs895819 was related to an increased GDM risk (OR=3.989; 95% CI: 1.309-12.16; P = 0.015). In addition, the haplotype T-C had a positive interaction with GDM (OR=1.376; 95% CI: 1.075-1.790; P=0.018), especially in the 18.5 ≤ pre-BMI < 24 group (OR=1.403; 95% CI: 1.026-1.921; P=0.034). Moreover, the blood glucose level of the rs895819 CC genotype was significantly higher than that of the TT and TC genotypes (P < 0.05). The TT-CC genotype of rs11614913-rs895819 showed that the blood glucose level was significantly higher than that of the other genotypes. Discussion: Our findings suggest that miR-27a rs895819 is associated with increased GDM susceptibility and higher blood glucose levels.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , MicroRNAs , Feminino , Humanos , Gravidez , Glicemia , Diabetes Gestacional/genética , População do Leste Asiático , Predisposição Genética para Doença , MicroRNAs/genética , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único
4.
Transl Oncol ; 20: 101407, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35381525

RESUMO

Brain tumors are the leading cause of cancer-related deaths in children. Tailored therapies need preclinical brain tumor models representing a wide range of molecular subtypes. Here, we adapted a previously established brain tissue-model to fresh patient tumor cells with the goal of establishing3D in vitro culture conditions for each tumor type.Wereported our findings from 11 pediatric tumor cases, consisting of three medulloblastoma (MB) patients, three ependymoma (EPN) patients, one glioblastoma (GBM) patient, and four juvenile pilocytic astrocytoma (Ast) patients. Chemically defined media consisting of a mixture of pro-neural and pro-endothelial cell culture medium was found to support better growth than serum-containing medium for all the tumor cases we tested. 3D scaffold alone was found to support cell heterogeneity and tumor type-dependent spheroid-forming ability; both properties were lost in 2D or gel-only control cultures. Limited in vitro models showed that the number of differentially expressed genes between in vitro vs. primary tissues, are 104 (0.6%) of medulloblastoma, 3,392 (20.2%) of ependymoma, and 576 (3.4%) of astrocytoma, out of total 16,795 protein-coding genes and lincRNAs. Two models derived from a same medulloblastoma patient clustered together with the patient-matched primary tumor tissue; both models were 3D scaffold-only in Neurobasal and EGM 1:1 (v/v) mixture and differed by a 1-mo gap in culture (i.e., 6wk versus 10wk). The genes underlying the in vitrovs. in vivo tissue differences may provide mechanistic insights into the tumor microenvironment. This study is the first step towards establishing a pipeline from patient cells to models to personalized drug testing for brain cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA