Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Cancer ; 24(1): 156, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291366

RESUMO

BACKGROUND: Lactate dehydrogenase (LDHs) is an enzyme involved in anaerobic glycolysis, including LDHA, LDHB, LDHC and LDHD. Given the regulatory role in the biological progression of certain tumors, we analyzed the role of LDHs in pan-cancers. METHODS: Cox regression, Kaplan-Meier curves, Receiver Operating Characteristic (ROC) curves, and correlation of clinical indicators in tumor patients were used to assess the prognostic significance of LDHs in pan-cancer. The TCGA, HPA, TIMER, UALCAN, TISIDB, and Cellminer databases were used to investigate the correlation between the expression of LDHs and immune subtypes, immune checkpoint genes, methylation levels, tumor mutational load, microsatellite instability, tumor-infiltrating immune cells and drug sensitivity. The cBioPortal database was also used to identify genomic abnormalities of LDHs in pan-cancer. A comprehensive assessment of the biological functions of LDHs was performed using GSEA. In vitro, HepG2 and Huh7 cells were transfected with LDHD siRNA and GFP-LDHD, the proliferation capacity of cells was examined using CCK-8, EdU, and colony formation assays; the migration and invasion of cells was detected by wound healing and transwell assays; western blotting was used to detect the levels of MMP-2, MMP-9, E-cadherin, N-cadherin and Akt phosphorylation. RESULTS: LDHs were differentially expressed in a variety of human tumor tissues. LDHs subtypes can act as pro-oncogenes or anti-oncogenes in different types of cancer and have an impact on the prognosis of patients with tumors by influencing their clinicopathological characteristics. LDHs were differentially expressed in tumor immune subtypes and molecular subtypes. In addition, LDHs expression correlated with immune checkpoint genes, tumor mutational load, and microsatellite instability. LDHD was identified to play an important role in the prognosis of HCC patients, according to a comprehensive analysis of LDHs in pan-cancer. In HepG2 and Huh7 cells, knockdown of LDHD promoted cell proliferation, migration, and invasion, promoted the protein expression levels of MMP-2, MMP-9, N-cadherin, and Akt phosphorylation, but inhibited the protein expression level of E-cadherin. In addition, LDHD overexpression showed the opposite changes. CONCLUSION: LDHs subtypes can be used as potential prognostic markers for certain cancers. Prognostic and immunotherapeutic analysis indicated that LDHD plays an important role in the prognosis of HCC patients. In vitro experiments revealed that LDHD can affect HCC proliferation, migration, and invasion by regulating MMPs expression and EMT via Akt signaling pathway, which provides a new perspective on the anti-cancer molecular mechanism of LDHD in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Caderinas/genética , Carcinoma Hepatocelular/genética , L-Lactato Desidrogenase , Neoplasias Hepáticas/genética , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Instabilidade de Microssatélites , Prognóstico , Proteínas Proto-Oncogênicas c-akt
2.
J Cancer ; 15(7): 2045-2065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434979

RESUMO

Background: RNA methylation modifications are important post-translational modifications that are regulated in an epigenetic manner. Recently, N6-methyladenosine (m6A) RNA modifications have emerged as potential epigenetic markers in tumor biology. Methods: Gene expression and clinicopathological data of LIHC were obtained from the cancer genome atlas (TCGA) database. The relationship between long non-coding RNAs (lncRNAs) and m6A-related genes was determined by gene expression analysis using Perl and R software. Co-expression network of m6A-lncRNA was constructed, and the relevant lncRNAs associated with prognosis were identified using univariate Cox regression analysis. These lncRNAs were then divided into two clusters (cluster 1 and cluster 2) to determine the differences in survival, pathoclinical parameters, and immune cell infiltration between the different lncRNA subtypes. The least absolute shrinkage and selection operator (LASSO) was carried out for regression analysis and prognostic model. The HCC patients were randomly divided into a train group and a test group. According to the median risk score of the model, HCC patients were divided into high-risk and low-risk groups. We built models using the train group and confirmed them through the test group. The m6A-lncRNAs derived from the models were analyzed for the tumor mutational burden (TMB), immune evasion and immune function using R software. AL355574.1 was identified as an important m6A-associated lncRNA and selected for further investigation. Finally, in vitro experiments were conducted to confirm the effect of AL355574.1 on the biological function of HCC and the possible biological mechanisms. Huh7 and HepG2 cells were transfected with AL355574.1 siRNA and cell proliferation ability was measured by CCK-8, EdU and colony formation assays. Wound healing and transwell assays were used to determine the cell migration capacity. The expression levels of MMP-2, MMP-9, E-cadherin, N-cadherin and Akt/mTOR phosphorylation were all determined by Western blotting. Results: The lncRNAs with significant prognostic value were classified into two subtypes by a consistent clustering analysis. We found that the clinical features, immune cell infiltration and tumor microenvironment (TME) were significantly different between the lncRNA subtypes. Our analysis revealed significant correlations between these different lncRNA subtypes and immune infiltrating and stromal cells. We created the final risk profile using LASSO regression, which notably included three lncRNAs (AL355574.1, AL158166.1, TMCC1-AS1). A prognostic signature consisting of the three lncRNAs was constructed, and the model showed excellent prognostic predictive ability. The overall survival (OS) of the low-risk cohort was significantly higher than that of the high-risk cohort in both the train and test group. Both risk score [hazard ratio (HR)=1.062; P<0.001] and stage (HR=1.647; P< 0.001) were considered independent indicators of HCC prognosis by univariate and multivariate Cox regression analysis. In Huh7 and HepG2 cells, AL355574.1 knockdown inhibited cell proliferation and migration, suppressed the protein expression levels of MMP-2, MMP-9, N-cadherin and Akt/mTOR phosphorylation, but promoted the protein expression levels of E-cadherin. Conclusions: This study established a predictive model for the OS of HCC patients, and these OS-related m6A-lncRNAs, especially AL355574.1 may play a potential role in the progression of HCC. In vitro experiments also showed that AL355574.1 could enhance the expression of MMPs and EMT through the Akt/mTOR signaling pathway, thereby affected the proliferation and migration of HCC. This provides a new perspective on the anticancer molecular mechanism of AL355574.1 in HCC.

3.
Sci Rep ; 14(1): 2468, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291086

RESUMO

Coagulation factor 2 thrombin receptor (F2R), a member of the G protein-coupled receptor family, plays an important role in regulating blood clotting through protein hydrolytic cleavage mediated receptor activation. However, the underlying biological mechanisms by which F2R affects the development of gastric adenocarcinoma are not fully understood. This study aimed to systematically analyze the role of F2R in gastric adenocarcinoma. Stomach adenocarcinoma (STAD)-related gene microarray data and corresponding clinicopathological information were downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential expression genes (DEGs) associated with F2R were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) networks. F2R mRNA expression data were utilized to estimate stromal cell and immune cell scores in gastric cancer tissue samples, including stromal score, immune score, and ESTIMATE score, derived from single-sample enrichment studies. Analysis of TCGA and GEO databases revealed significantly higher F2R expression in STAD tissues compared to normal tissues. Patients with high F2R expression had shorter survival times than those with low F2R expression. F2R expression was significantly correlated with tumor (T) stage, node (N) stage, histological grade and pathological stage. Enrichment analysis of F2R-related genes showed that GO terms were mainly related to circulation-mediated human immune response, immunoglobulin, cell recognition and phagocytosis. KEGG analysis indicated associations to extracellular matrix (ECM) receptor interactions, neuroactive ligand-receptor interactions, the phosphoinositide-3-kinase-protein kinase B/Akt (PI3K-AKT) signaling pathway, the Wnt signaling pathway and the transforming growth factor-beta (TGF-ß) signaling pathway. GSEA revealed connections to DNA replication, the Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway and oxidative phosphorylation. Drug sensitivity analysis demonstrated positive correlations between F2R and several drugs, including BEZ235, CGP-60474, Dasatinib, HG-6-64-1, Aazopanib, Rapamycin, Sunitinib and TGX221, while negative correlation with CP724714, FH535, GSK1904529A, JNK-9L, LY317615, pyrimidine, rTRAIL and Vinorelbine. Knocking down F2R in GC cell lines resulted in slowed proliferation, migration, and invasion. All statistical analyses were performed using R software (version 4.2.1) and GraphPad Prism 9.0. p < 0.05 was considered statistically significant. In conclusion, this study underscores the significance of F2R as a potential biomarker in gastric adenocarcinoma, shedding light on its molecular mechanisms in tumorigenesis. F2R holds promise for aiding in the diagnosis, prognosis, and targeted therapy of STAD.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Protrombina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fosfatidilinositol 3-Quinases/genética , Regulação Neoplásica da Expressão Gênica , Biomarcadores , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biologia Computacional/métodos
4.
Int Immunopharmacol ; 138: 112553, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38943975

RESUMO

BACKGROUND AND AIMS: Lung adenocarcinoma (LUAD) is the most common and aggressive cancer with a high incidence. N1-specific pseudouridine methyltransferase (EMG1), a highly conserved nucleolus protein, plays an important role in the biological development of ribosomes. However, the role of EMG1 in the progression of LUAD is still unclear. METHODS: The expression of EMG1 in LUAD cells, and LUAD tissues, and adjacent noncancerous tissues was quantified using real-time polymerase chain reaction (PCR) and western blotting. The roles of EMG1 in LUAD cell proliferation, migration, invasion and tumorigenicity were explored in vitro and in vivo. Western blot analysis to underlying molecular mechanism of EMG1 regulating the biological function of LUAD. EMG1 expression and its impact on tumor prognosis were analyzed using a range of databases including GEPIA, UALCAN, cBioPortal, LinkedOmics, and Kaplan-Meier Plotter. RESULTS: EMG1 expression was elevated in LUAD patients compared to normal tissues, and EMG1 expression was strongly correlated with prognosis in LUAD patients. EMG1 expression correlated with age, gender, N stage, T stage, and pathologic stage. EMG1 expression was strongly positively correlated with MRPL51, PHB2, SNRPG, ATP5MD, and TPI1, and strongly negatively correlated with MACF1, DOCK9, RAPGEF2, SYNJ1, and KIDINS220, the major enrichment pathways for EMG1 and related genes include Cell cycle, DNA Replication and Pathways in cancer signaling pathways. EMG1 expression level was significantly increased in LUAD cell lines and tissues. Knockdown of EMG1 could inhibit LUAD cell proliferation, migration, invasion, and tumorigenicity. Besides, EMG1 overexpression could promote LUAD cell proliferation, migration, and invasion. High expression of EMG1 predicts poor prognosis in LUAD patients, and EMG1 may play an oncogenic role in the tumor microenvironment by participating in the infiltration of LUAD immune cells. CONCLUSIONS: EMG1 regulated various functions in LUAD by directly mediating Akt/mTOR/p70s6k signaling pathways activation. The results suggest that EMG1 may be a novel biomarker for assessing prognosis and immune cell infiltration in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Progressão da Doença , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Prognóstico , Masculino , Feminino , Animais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Movimento Celular , Pessoa de Meia-Idade , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Nus , Camundongos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Camundongos Endogâmicos BALB C
5.
Front Pharmacol ; 15: 1366529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711993

RESUMO

Introduction: It is known that patients with immune-abnormal co-pregnancies are at a higher risk of adverse pregnancy outcomes. Traditional pregnancy risk management systems have poor prediction abilities for adverse pregnancy outcomes in such patients, with many limitations in clinical application. In this study, we will use machine learning to screen high-risk factors for miscarriage and develop a miscarriage risk prediction model for patients with immune-abnormal pregnancies. This model aims to provide an adjunctive tool for the clinical identification of patients at high risk of miscarriage and to allow for active intervention to reduce adverse pregnancy outcomes. Methods: Patients with immune-abnormal pregnancies attending Sichuan Provincial People's Hospital were collected through electronic medical records (EMR). The data were divided into a training set and a test set in an 8:2 ratio. Comparisons were made to evaluate the performance of traditional pregnancy risk assessment tools for clinical applications. This analysis involved assessing the cost-benefit of clinical treatment, evaluating the model's performance, and determining its economic value. Data sampling methods, feature screening, and machine learning algorithms were utilized to develop predictive models. These models were internally validated using 10-fold cross-validation for the training set and externally validated using bootstrapping for the test set. Model performance was assessed by the area under the characteristic curve (AUC). Based on the best parameters, a predictive model for miscarriage risk was developed, and the SHapley additive expansion (SHAP) method was used to assess the best model feature contribution. Results: A total of 565 patients were included in this study on machine learning-based models for predicting the risk of miscarriage in patients with immune-abnormal pregnancies. Twenty-eight risk warning models were developed, and the predictive model constructed using XGBoost demonstrated the best performance with an AUC of 0.9209. The SHAP analysis of the best model highlighted the total number of medications, as well as the use of aspirin and low molecular weight heparin, as significant influencing factors. The implementation of the pregnancy risk scoring rules resulted in accuracy, precision, and F1 scores of 0.3009, 0.1663, and 0.2852, respectively. The economic evaluation showed a saving of ¥7,485,865.7 due to the model. Conclusion: The predictive model developed in this study performed well in estimating the risk of miscarriage in patients with immune-abnormal pregnancies. The findings of the model interpretation identified the total number of medications and the use of other medications during pregnancy as key factors in the early warning model for miscarriage risk. This provides an important basis for early risk assessment and intervention in immune-abnormal pregnancies. The predictive model developed in this study demonstrated better risk prediction performance than the Pregnancy Risk Management System (PRMS) and also demonstrated economic value. Therefore, miscarriage risk prediction in patients with immune-abnormal pregnancies may be the most cost-effective management method.

6.
Mol Neurobiol ; 61(8): 5418-5440, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38193984

RESUMO

Long noncoding RNAs (lncRNAs) play crucial roles in tumor progression and are dysregulated in glioma. However, the functional roles of lncRNAs in glioma remain largely unknown. In this study, we utilized the TCGA (the Cancer Genome Atlas database) and GEPIA2 (Gene Expression Profiling Interactive Analysis 2) databases and observed the overexpression of lncRNA CHASERR in glioma tissues. We subsequently investigated this phenomenon in glioma cell lines. The effects of lncRNA CHASERR on glioma proliferation, migration, and invasion were analyzed using in vitro and in vivo experiments. Additionally, the regulatory mechanisms among PTEN/p-Akt/mTOR and Wnt/ß-catenin, lncRNA CHASERR, Micro-RNA-6893-3p(miR-6893-3p), and tripartite motif containing14 (TRIM14) were investigated via bioinformatics analyses, quantitative real-time PCR (qRT-PCR), western blot (WB), RNA immunoprecipitation (RIP), dual luciferase reporter assay, fluorescence in situ hybridization (FISH), and RNA sequencing assays. RIP and RT-qRCR were used to analyze the regulatory effect of N6-methyladenosine(m6A) on the aberrantly expressed lncRNA CHASERR. High lncRNA CHASERR expression was observed in glioma tissues and was associated with unfavorable prognosis in glioma patients. Further functional assays showed that lncRNA CHASERR regulates glioma growth and metastasis in vitro and in vivo. Mechanistically, lncRNA CHASERR sponged miR-6893-3p to upregulate TRIM14 expression, thereby facilitating glioma progression. Additionally, the activation of PTEN/p-Akt/mTOR and Wnt/ß-catenin pathways by lncRNA CHASERR, miR-6893-3p, and TRIM14 was found to regulate glioma progression. Moreover, the upregulation of lncRNA CHASERR was observed in response to N6-methyladenosine modification, which was facilitated by METTL3/YTHDF1-mediated RNA transcripts. This study elucidates the m6A/lncRNACHASERR/miR-6893-3p/TRIM14 pathway that contributes to glioma progression and underscores the potential of lncRNA CHASERR as a novel prognostic indicator and therapeutic target for glioma.


Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioma , MicroRNAs , RNA Longo não Codificante , Proteínas com Motivo Tripartido , Regulação para Cima , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Glioma/genética , Glioma/patologia , Glioma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Cima/genética , Linhagem Celular Tumoral , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Animais , Camundongos Nus , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Proliferação de Células/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Movimento Celular/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C
7.
Front Pharmacol ; 14: 1259596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269284

RESUMO

Patients with type 2 diabetes mellitus (T2DM) are at higher risk for urinary tract infections (UTIs), which greatly impacts their quality of life. Developing a risk prediction model to identify high-risk patients for UTIs in those with T2DM and assisting clinical decision-making can help reduce the incidence of UTIs in T2DM patients. To construct the predictive model, potential relevant variables were first selected from the reference literature, and then data was extracted from the Hospital Information System (HIS) of the Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital for analysis. The data set was split into a training set and a test set in an 8:2 ratio. To handle the data and establish risk warning models, four imputation methods, four balancing methods, three feature screening methods, and eighteen machine learning algorithms were employed. A 10-fold cross-validation technique was applied to internally validate the training set, while the bootstrap method was used for external validation in the test set. The area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were used to evaluate the performance of the models. The contributions of features were interpreted using the SHapley Additive ExPlanation (SHAP) approach. And a web-based prediction platform for UTIs in T2DM was constructed by Flask framework. Finally, 106 variables were identified for analysis from a total of 119 literature sources, and 1340 patients were included in the study. After comprehensive data preprocessing, a total of 48 datasets were generated, and 864 risk warning models were constructed based on various balancing methods, feature selection techniques, and a range of machine learning algorithms. The receiver operating characteristic (ROC) curves were used to assess the performances of these models, and the best model achieved an impressive AUC of 0.9789 upon external validation. Notably, the most critical factors contributing to UTIs in T2DM patients were found to be UTIs-related inflammatory markers, medication use, mainly SGLT2 inhibitors, severity of comorbidities, blood routine indicators, as well as other factors such as length of hospital stay and estimated glomerular filtration rate (eGFR). Furthermore, the SHAP method was utilized to interpret the contribution of each feature to the model. And based on the optimal predictive model a user-friendly prediction platform for UTIs in T2DM was built to assist clinicians in making clinical decisions. The machine learning model-based prediction system developed in this study exhibited favorable predictive ability and promising clinical utility. The web-based prediction platform, combined with the professional judgment of clinicians, can assist to make better clinical decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA