Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(19): 8948-8957, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38687980

RESUMO

Excellent electrocatalytic CO2 reduction reaction activity has been demonstrated by transition metals and nitrogen-codoped carbon (M-N-C) catalysts, especially for transition-metal porphyrin (MTPP)-based catalysts. In this work, we propose to use one-step low-temperature pyrolysis of the isostructural MTPP-based metal-organic frameworks (MOFs) and electrochemical in situ reduction strategies to obtain a series of hybrid catalysts of Co nanoparticles (Co NPs) and MTPP, named Co NPs/MTPP (M = Fe, Co, and Ni). The in situ introduction of Co NPs can efficiently enhance the electrocatalytic ability of MTPP (M = Fe, Co, and Ni) to convert CO2 to CO, particularly for FeTPP. Co NPs/FeTPP endowed a high CO faradaic efficiency (FECOmax = 95.5%) in the H cell, and the FECO > 90.0% is in the broad potential range of -0.72 to -1.22 VRHE. In addition, the Co NPs/FeTPP achieved 145.4 mA cm-2 at a lower potential of -0.70 VRHE with an FECO of 94.7%, and the CO partial currents increased quickly to reach 202.2 mA cm-2 at -0.80 VRHE with an FECO of 91.6% in the flow cell. It is confirmed that Co NPs are necessary for hybrid catalysts to get superior electrocatalytic activity; Co NPs also can accelerate H2O dissociation and boost the proton supply capacity to hasten the proton-coupled electron-transfer process, effectively adjusting the adsorption strength of the reaction intermediates.

2.
Environ Sci Technol ; 58(1): 660-670, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38110333

RESUMO

To effectively remove high concentrations of mercury in a high sulfur atmosphere of nonferrous smelting flue gas, a novel two-dimensional CuS-MOF (CuS-BDC-2D) material is synthesized by anchoring S to Cu sites in the Cu-BDC MOF. The highly dispersed CuS active sites and MOF framework structural properties in CuS-BDC-2D enable efficiently collaborate in capturing mercury. CuS-BDC-2D exhibits a layered floral structure with high specific surface area and thermal stability, with poor crystallinity. Compared to CuS and the three-dimensional CuS-MOF (CuS-BDC-3D) structure, CuS-BDC-2D demonstrates significantly higher mercury capture capacity due to the high exposure of active sites and defects sites in the two-dimensional material. Moreover, CuS-BDC-2D exhibits excellent resistance to sulfur, maintaining its high efficiency in removing Hg0 even at high levels of sulfur dioxide (SO2), such as 5000-20,000 ppm. The superior performance of CuS-BDC-2D makes it suitable for controlling mercury emissions in actual nonferrous smelting flue gas. This discovery also paves the way for the development of new mercury adsorbents, which can guide future advancements in this field.


Assuntos
Mercúrio , Mercúrio/química , Adsorção , Metais , Dióxido de Enxofre , Enxofre
3.
Environ Res ; 262(Pt 2): 119865, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216735

RESUMO

With the widespread application of ternary lithium-ion batteries (TLBs) in various fields, the disposal of spent TLBs has become a globally recognized issue. This study proposes a novel method for reutilizing metal resources from TLBs. Through selective oxidation, manganese in a leaching solution of TLBs was converted into MnO2 with α, γ, and δ crystal phases (referred to as T-MnO2) for catalytic oxidation of volatile organic compounds (VOCs), while efficiently separating manganese from high-value metals such as nickel, cobalt, and lithium, achieving a manganese recovery rate of 99.99%. Compared to similar MnO2 prepared from pure materials, T-MnO2 exhibited superior degradation performance for toluene and chlorobenzene, with T90 decreasing by around 30 °C. The acidic synthesis environment provided by the leaching solution and the doping of trace metals altered the physicochemical properties of T-MnO2, such as increased specific surface area, elevated surface manganese valence, and improved redox performance and oxygen vacancy properties, enhancing its catalytic oxidation capacity. Furthermore, the degradation pathway of toluene on T-γ-MnO2 was inferred using thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) and in-situ DRIFTs. This study provides a novel approach for recycling spent TLBs and treating VOCs catalytically.

4.
Angew Chem Int Ed Engl ; : e202412680, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166757

RESUMO

Designing highly active and cost-effective electrocatalysts for the alkaline hydrogen oxidation reaction (HOR) is critical for advancing anion-exchange membrane fuel cells (AEMFCs). While dilute metal alloys have demonstrated substantial potential in enhancing alkaline HOR performance, there has been limited exploration in terms of rational design, controllable synthesis, and mechanism study. Herein, we developed a series of dilute Pd-Ni alloys, denoted as x% Pd-Ni, based on a trace-Pd decorated Ni-based coordination polymer through a facile low-temperature pyrolysis approach. The x% Pd-Ni alloys exhibit efficient electrocatalytic activity for HOR in alkaline media. Notably, the optimal 0.5 % Pd-Ni catalyst demonstrates high intrinsic activity with an exchange current density of 0.055 mA cm-2, surpassing that of many other alkaline HOR catalysts. The mechanism study reveals that the strong synergy between Pd single atoms (SAs)/Pd dimer and Ni substrate can modulate the binding strength of proton (H)/hydroxyl (OH), thereby significantly reducing the activation energy barrier of a decisive reaction step. This work offers new insights into designing advanced dilute metal or single-atom-alloys (SAAs) for alkaline HOR and potentially other energy conversion processes.

5.
Nat Mater ; 21(6): 689-695, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35484330

RESUMO

In principle, porous physisorbents are attractive candidates for the removal of volatile organic compounds such as benzene by virtue of their low energy for the capture and release of this pollutant. Unfortunately, many physisorbents exhibit weak sorbate-sorbent interactions, resulting in poor selectivity and low uptake when volatile organic compounds are present at trace concentrations. Herein, we report that a family of double-walled metal-dipyrazolate frameworks, BUT-53 to BUT-58, exhibit benzene uptakes at 298 K of 2.47-3.28 mmol g-1 at <10 Pa. Breakthrough experiments revealed that BUT-55, a supramolecular isomer of the metal-organic framework Co(BDP) (H2BDP = 1,4-di(1H-pyrazol-4-yl)benzene), captures trace levels of benzene, producing an air stream with benzene content below acceptable limits. Furthermore, BUT-55 can be regenerated with mild heating. Insight into the performance of BUT-55 comes from the crystal structure of the benzene-loaded phase (C6H6@BUT-55) and density functional theory calculations, which reveal that C-H···X interactions drive the tight binding of benzene. Our results demonstrate that BUT-55 is a recyclable physisorbent that exhibits high affinity and adsorption capacity towards benzene, making it a candidate for environmental remediation of benzene-contaminated gas mixtures.


Assuntos
Estruturas Metalorgânicas , Compostos Orgânicos Voláteis , Adsorção , Benzeno/química , Gases
6.
Inorg Chem ; 62(40): 16426-16434, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37750677

RESUMO

Metal-organic frameworks (MOFs) are emerging as promising candidates for electrochemical glucose sensing owing to their ordered channels, tunable chemistry, and atom-precision metal sites. Herein, the efficient nonenzymatic electrochemical glucose sensing is achieved by taking advantage of Ni(II)-based metal-organic frameworks (Ni(II)-MOFs) and acquiring the ever-reported fastest response time. Three Ni(II)-MOFs ({[Ni6L2(H2O)26]4H2O}n (CTGU-33), {Ni(bib)1/2(H2L)1/2(H2O)3}n (CTGU-34), {Ni(phen)(H2L)1/2(H2O)2}n (CTGU-35)) have been synthesized for the first time, which use benzene-1,2,3,4,5,6-hexacarboxylic acid (H6L) as an organic ligand and introduce 1,4-bis(1-imidazoly)benzene (bib) or 1,10-phenanthroline (phen) as spatially auxiliary ligands. Bib and phen convert the coordination mode of CTGU-33, affording structural dimensions from 2D of CTGU-33 to 3D of CTGU-34 or 1D of CTGU-35. By tuning the dimension of the skeleton, CTGU-34 with 3D interconnected channels exhibits an ultrafast response of less than 0.4 s, which is superior to the existing nonenzymatic electrochemical sensors. Additionally, a low detection limit of 0.12 µM (S/N = 3) and a high sensitivity of 1705 µA mM-1 cm-2 are simultaneously achieved. CTGU-34 further showcases desirable anti-interference and cycling stability, which demonstrates a promising application prospect in the real-time detection of glucose.

7.
Inorg Chem ; 62(26): 10256-10262, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37344358

RESUMO

Two-dimensional metal-organic framework (MOF) crystalline materials possess promising potential in the electrochemical sensing process owing to their tunable structures, high specific surface area, and abundant metal active sites; however, developing MOF-based nonenzymatic glucose (Glu) sensors which combine electrochemical activity and environmental stability remains a challenge. Herein, utilizing the tripodic nitrogen-bridged 1,3,5-tris(1-imidazolyl) benzene (TIB) linker, Co2+ and Ni2+, two 2D isomorphic crystalline materials, including Co/Ni-MOF {[Co (TIB)]·2BF4} (CTGU-31) and {[Ni(TIB)]·2NO3} (CTGU-32), with a binodal (3, 6)-connected kgd topological net were firstly synthesized and fabricated with conducting acetylene black (AB). When modified on a glassy carbon electrode, the optimized AB/CTGU-32 (1:1) electrocatalyst demonstrated a higher sensitivity of 2.198 µA µM-1 cm-2, a wider linear range from 10 to 4000 µM, and a lower detection limit (LOD) value (0.09 µM, S/N = 3) compared to previously MOF-based Glu sensors. Moreover, AB/CTGU-32 (1:1) exhibited desirable stability for at least 2000 s during the electrochemical process. The work indicates that MOF-based electrocatalysts are a promising candidate for monitoring Glu and demonstrate their potential for preliminary screening for diabetes.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Carbono/química , Níquel/química , Eletrodos , Acetileno , Glucose/química
8.
Molecules ; 28(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985658

RESUMO

The flavonoids in Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) have high medicinal value. However, because of slow growth and harsh ecological environments, T. hemsleyanum is currently an endangered species. In light of this, we present a detailed hairy root induction procedure as a promising alternative to true roots with medicinal value. The percentage of explants induced by Agrobacterium rhizogenes (A. rhizogenes) to produce hairy roots out of the total number of explants infected (induction rate 1) was 95.83 ± 7.22%, and the proportion of hairy roots that contained Rol B fragments among all the hairy roots with or without Rol B fragments (positive rate) was 96.57 ± 1.72%. The transformation was further confirmed by the expression of the GUS protein. A high-productive hairy root line was screened for the comparative profiling of six flavonoids with true roots using high-performance liquid chromatography (HPLC). The contents of (+)-catechin, (-)-epicatechin, neochlorogenic acid, luteolin-6-C-glucoside, and orientin were 692.63 ± 127.24, 163.34 ± 31.86, 45.95 ± 3.46, 209.68 ± 6.03, and 56.82 ± 4.75 µg/g dry weight (DW) of 30-day-old hairy roots, respectively, which were higher than those of 3-year-old true roots. Hairy roots have stronger antioxidant activity than true roots. Overall, the hairy roots of T. hemsleyanum could serve as promising alternative sources for the production of flavonoids with medicinal uses.


Assuntos
Catequina , Vitaceae , Flavonoides/metabolismo , Raízes de Plantas/metabolismo , Catequina/metabolismo
9.
Planta ; 256(2): 42, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842503

RESUMO

MAIN CONCLUSION: Phosphate deficiency promotes anthocyanin accumulation in Arabidopsis through direct binding of PHR1 to the P1BS motifs on the promoters of F3'H and LDOX and thereby upregulating their expression. Phosphorus is one of the essential elements for plants, and plants mainly absorb inorganic phosphate (Pi) from soil. But Pi deficiency is a common factor limiting plant growth and development. Anthocyanin accumulation in green tissues (such as leaves) is one of the characteristics of many plants in response to Pi starvation. However, little is known about the mechanism by which Pi starvation induces anthocyanin accumulation. Here, we found that the mutation of the gene PHOSPHATE STARVATION RESPONSE1 (PHR1), which encodes a key factor involved in Pi starvation signaling in Arabidopsis, significantly attenuates anthocyanin accumulation under Pi-limiting conditions. Moreover, the expression of several Pi deficiency-upregulated genes that are involved in anthocyanin biosyntheses, such as flavanone 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX), and production of anthocyanin pigment 1 (PAP1), was significantly lower in the phr1-1 mutant than in the wild type (WT). Both yeast one-hybrid (Y1H) analysis and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) showed that PHR1 can interact with the promoters of F3'H and LDOX, but not DFR and PAP1. By electrophoretic mobility shift assay (EMSA), it was further confirmed that the PHR1-binding sequence (P1BS) motifs located on the F3'H and LDOX promoters are required for the PHR1 bindings. Also, in Arabidopsis protoplasts, PHR1 enhanced the transcriptional activity of the F3'H and LDOX promoters, but these effects were markedly impaired when the P1BS motifs were mutated. Taken together, these results indicate that PHR1 positively regulates Pi starvation-induced anthocyanin accumulation in Arabidopsis, at least in part, by directly binding the P1BS motifs located on the promoters to upregulate the transcription of anthocyanin biosynthetic genes F3'H and LDOX.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases , Fosfatos/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
10.
Inorg Chem ; 61(4): 1918-1927, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35044169

RESUMO

Metal-organic frameworks (MOFs) provide an ideal platform for ion exchange due to their high porosity and structural designability; however, developing MOFs that have the essential characteristics for ion exchange remains a challenge. These crucial features include fast kinetics, selectivity, and stability. We present two anionic isomers, DGIST-2 (2D) and DGIST-3 (3D), comprising distinctly arranged 5-(1,8-naphthalimido)isophthalate ligands and In3+ cations. Interestingly, in protic solvents, DGIST-2 transforms into a hydrolytically stable crystalline phase, DGIST-2'. DGIST-2' and DGIST-3 exhibit rapid Cs+ adsorption kinetics, as well as high Cs+ affinity in the presence of competing cations. The mechanism for rapid and selective sorption is explored based on the results of single-crystal X-ray diffraction analysis of Cs+-incorporated DGIST-3. In Cs+-containing solutions, the loosely incorporated dimethylammonium countercation of the anionic framework is replaced by Cs+, which is held in the hydrophobic cavity by supramolecular ion-ion and cation-π interactions.

11.
Molecules ; 27(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432126

RESUMO

Polysaccharides, which can be affected by different preparations, play a crucial role in the biological function of Paecilomyces hepiali (PHPS) as a health food. To explore high-valued polysaccharides and reduce the negative influence of human involvement, a green tailorable deep eutectic solvent (DES) was applied to optimize the extraction of polysaccharides (PHPS-D), followed by the evaluation of the structural properties and immunomodulation by comparison with the hot-water method (PHPS-W). The results indicated that the best system for PHPS-D was a type of carboxylic acid-based DES consisting of choline chloride and succinic acid in the molar ratio of 1:3, with a 30% water content. The optimal condition was as follows: liquid-solid ratio of 50 mL/g, extraction temperature of 85 °C, and extraction time of 1.7 h. The actual PHPS-D yield was 12.78 ± 0.17%, which was obviously higher than that of PHPS-W. The structural characteristics suggested that PHPS-D contained more uronic acid (22.34 ± 1.38%) and glucose (40.3 ± 0.5%), with a higher molecular weight (3.26 × 105 g/mol) and longer radius of gyration (78.2 ± 3.6 nm), as well as extended chain conformation, compared with PHPS-W, and these results were confirmed by AFM and SEM. Immunomodulatory assays suggested that PHPS-D showed better performance than PHPS-W regarding pinocytic activity and the secretion of NO and pro-inflammatory cytokines (IL-6, TNF-α and IL-1ß) by activating the corresponding mRNA expression in RAW264.7 cells. This study showed that carboxylic acid-based DES could be a promising tailorable green system for acidic polysaccharide preparation and the valorization of P. hepiali in functional foods.


Assuntos
Solventes Eutéticos Profundos , Polissacarídeos , Humanos , Solventes/química , Polissacarídeos/farmacologia , Água/química , Imunomodulação , Ácidos Carboxílicos
12.
Molecules ; 27(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408513

RESUMO

A new MOF-74(Ni)/NiOOH heterogeneous composite was synthesized via NiOOH microsphere precursor. The electrocatalytic methanol oxidation reactions' (MOR) performance was assessed. The as-prepared MOF-74(Ni)/NiOOH exhibited excellent activity with high peak current density (27.62 mA·cm-2) and high mass activity (243.8 mA·mg-1). The enhanced activity could be a result of the synergistic effect of the MOF-74(Ni)/NiOOH heterocomposite providing more exposed active sites, a beneficial diffusion path between the catalyst surface and electrolyte, and improved conductivity, favorable for improving MOR performance.

13.
Environ Monit Assess ; 194(5): 353, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35403979

RESUMO

The municipal solid waste incineration (MSWI) fly ash has been a major problem with the rapid development of the cities in China. And the cement rotary kiln co-processing technique is accepted as an effective method to dispose detrimental heavy metals in MSWI fly ash. This study focused on presented the total leaching content and the morphological distribution of the heavy metals in cement solid samples doped with MSWI fly ash. These samples were collected from a MSWI fly ash co-processing cement rotary kiln plant. The leaching test and the sequential extraction procedure were adopted to measure the migration characteristic of As, Pb, Cu, and Zn. In addition, the leachability of clinker samples under different simulated environmental conditions was also detected to analyze the security of the cement product doped with MSWI fly ash. This work demonstrates the feasibility of the cement rotary kiln MSWI fly ash co-processing technique and provides a scientific guidance to related plant.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono/análise , Cinza de Carvão/análise , Monitoramento Ambiental , Incineração , Chumbo/análise , Metais Pesados/análise , Material Particulado/análise , Resíduos Sólidos/análise , Zinco/análise
14.
J Am Chem Soc ; 143(26): 9901-9911, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34167295

RESUMO

Constructing stable palladium(II)-based metal-organic frameworks (MOFs) would unlock more opportunities for MOF chemistry, particularly toward applications in catalysis. However, their availability is limited by synthetic challenges due to the inertness of the Pd-ligand coordination bond, as well as the strong tendency of the Pd(II) source to be reduced under typical solvothermal conditions. Under the guidance of reticular chemistry, herein, we present the first example of an azolate Pd-MOF, BUT-33(Pd), obtained via a deuterated solvent-assisted metal metathesis. BUT-33(Pd) retains the underlying sodalite network and mesoporosity of the template BUT-33(Ni) and shows excellent chemical stability (resistance to an 8 M NaOH aqueous solution). With rich Pd(II) sites in the atomically precise distribution, it also demonstrates good performances as a heterogeneous Pd(II) catalyst in a wide application scope, including Suzuki/Heck coupling reactions and photocatalytic CO2 reduction to CH4. This work highlights a feasible approach to reticularly construct noble metal based MOFs via metal metathesis, in which various merits, including high chemical stability, large pores, and tunable functions, have been integrated for addressing challenging tasks.

15.
Small ; 17(22): e2005357, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33615728

RESUMO

Despite numerous inherent merits of metal-organic frameworks (MOFs), structural fragility has imposed great restrictions on their wider involvement in many applications, such as in catalysis. Herein, a strategy for enhancing stability and enabling functionality in a labile Zr(IV)-MOF has been proposed by in situ porphyrin substitution. A size- and geometry-matched robust linear porphyrin ligand 4,4'-(porphyrin-5,15-diyl)dibenzolate (DCPP2- ) is selected to replace the 4,4'-(1,3,6,8-tetraoxobenzo[lmn][3,8]phenanthroline-2,7(1H,3H,6H,8H)-diyl)dibenzoate (NDIDB2- ) ligand in the synthesis of BUT-109(Zr), affording BUT-110 with varied porphyrin contents. Compared to BUT-109(Zr), the chemical stability of BUT-110 series is greatly improved. Metalloporphyrin incorporation endows BUT-110 MOFs with high catalytic activity in the photoreduction of CO2 , in the absence of photosensitizers. By tuning the metal species and porphyrin contents in BUT-110, the resulting BUT-110-50%-Co is demonstrated to be a good photocatalyst for selective CO2 -to-CO reduction, via balancing the chemical stability, photocatalytic efficiency, and synthetic cost. This work highlights the advantages of in situ ligand substitution for MOF modification, by which uniform distribution and high content of the incoming ligand are accessible in the resulting MOFs. More importantly, it provides a promising approach to convert unstable MOFs, which mainly constitute the vast MOF database but have always been neglected, into robust functional materials.

16.
Physiol Plant ; 173(3): 1063-1077, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34263934

RESUMO

Inorganic phosphate (Pi) deficiency is a major limiting factor for plant growth and development. Previous reports have demonstrated that PHOSPHATE STARVATION RESPONSE 1 (PHR1) and OsPHR2 play central roles in Pi-starvation signaling in Arabidopsis and rice, respectively. However, the Pi-starvation signaling network in tomato (Solanum lycopersicum) is still not fully understood. In this work, SlPHL1, a homolog of AtPHR1 and OsPHR2, was identified from tomato. It was found that SlPHL1 contains the MYB and coiled-coil (CC) domains, localizes in the nucleus, and has transcriptional activity, indicating that it is a typical MYB-CC transcription factor (TF). Overexpression of SlPHL1 enhanced Pi-starvation responses both in Arabidopsis Col-0 and in tomato Micro-Tom, including elevated root hair growth, promoted APase activity, favored Pi uptake, and increased transcription of Pi starvation-inducing (PSI) genes. Besides, overexpressing SlPHL1 was able to compensate for the Pi-starvation response weakened by the AtPHR1 mutation. Notably, electrophoretic mobility shift assay (EMSA) showed that SlPHL1 could bind to the PHR1-binding sequence (P1BS, GNATATNC)-containing DNA fragments. Furthermore, SlPHL1 specifically interacted with the promoters of the tomato PSI genes SlPht1;2 and SlPht1;8 through the P1BS cis-elements. Taken these results together, SlPHL1 is a newly identified MYB-CC TF from tomato, which participates in Pi-starvation signaling by directly upregulating the PSI genes. These findings might contribute to the understanding of the Pi-starvation signaling in tomato.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Fosfatos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Small ; 16(41): e1906564, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32964611

RESUMO

The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal-organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)-MOF nanosheet array is presented as an ideal material model and a facile alkali-etched strategy is developed to break its NiO bonds accompanied with the introduction of extra-framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect-Ni-MOF||defect-Ni-MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm-2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts.

18.
Inorg Chem ; 57(22): 14260-14268, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30403482

RESUMO

As the Cr2O72- anion is highly toxic, new sensors have been developing for its effective detection from water, among which metal-organic frameworks (MOFs) show distinct superiority over many other materials. Herein, a new fluorescent Zr(IV)-based MOF, [Zr6O4(OH)8(H2O)4(sbtc)2] (referred to as BUT-28), based on the di-isophthalate ligand with a central CH═CH moiety, trans-stilbene-3,3',5,5'-tetracarboxylate (sbtc4-), has been prepared and structurally determined. The MOF shows excellent stability in neutral, highly acidic, and weakly basic aqueous solutions. Moreover, no essential uptake loss in three cycles of water vapor adsorption-desorption measurements was observed for BUT-28, suggesting the robustness of the porous framework and its great potential for long-term use. Fluorescent measurements were carried out for BUT-28 and an isostructural MOF, Zr-abtc, which is constructed from the di-isophthalate ligand with a central N═N moiety, azobenzene-3,3',5,5'-tetracarboxylate (abtc4-). Interestingly, Zr-abtc shows very weak fluorescent emission. In contrast, BUT-28 exhibits relatively strong fluorescence and serves as a promising sensory material for the detection of trace Cr2O72- (limit of detection: 36 ppb) in aqueous solutions by selective and sensitive fluorescence quenching effect.

19.
J Food Sci Technol ; 55(9): 3518-3525, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30150810

RESUMO

To determine the authenticity of Anoectochilus roxburghii, this study presents an application of near-infrared spectroscopy and chemometric methods for evaluating adulteration of A. roxburghii with two cheaper adulterants, i.e. C. Goodyera schlechtendaliana and Ludisia discolor. Partial least squares discriminant analysis models were built for the accurate classification of authentic A. roxburghii and A. roxburghii adulterated at 5-100% (w/w) levels. Partial least squares regression models were used to predict the level of adulteration in the A. roxburghii. After by compared different spectral pretreatment methods, and using interval PLS and synergy interval PLS for variable selection, optimum models were developed. These results show that the NIR spectroscopy combined with chemometric methods offers a simple, fast, and reliable method for classifying and quantifying the adulteration of A. roxburghii.

20.
Small ; 13(22)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28418186

RESUMO

Exploring novel multifunctional rare earth materials is very important because these materials have fundamental interests, such as new structural facts and connecting modes, as well as potential technological applications, including optics, magnetic properties, sorption, and catalytic behaviors. Especially, employing these nanomaterials for sensing or catalytic reactions is still very challenging. Herein, a new superstable, anionic terbium-metal-organic-framework, [H2 N(CH3 )2 ][Tb(cppa)2 (H2 O)2 ], (China Three Gorges University (CTGU-1), H2 cppa = 5-(4-carboxyphenyl)picolinic acid), is successfully prepared, which can be used as a turn-on, highly-sensitive fluorescent sensor to detect Eu3+ and Dy3+ , with a detection limitation of 5 × 10-8 and 1 × 10-4 m in dimethylformamide, respectively. This result represents the first example of lanthanide-metal-organic-frameworks (Ln-MOF) that can be employed as a discriminative fluorescent probe to recognize Eu3+ and Dy3+ . In addition, through ion exchanging at room temperature, Ag(I) can be readily reduced in situ and embedded in the anionic framework, which leads to the formation of nanometal-particle@Ln-MOF composite with uniform size and distribution. The as-prepared Ag@CTGU-1 shows remarkable catalytic performance to reduce 4-nitrophenol, with a reduction rate constant κ as large as 2.57 × 10-2 s-1 ; almost the highest value among all reported noble-metal-nanoparticle@MOF composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA