Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(25): 10173-10178, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32012424

RESUMO

Three rigid and structurally simple heterocyclic stilbene derivatives, (E)-3H,3'H-[1,1'-biisobenzofuranylidene]-3,3'-dione, (E)-3-(3-oxobenzo[c] thiophen-1(3H)-ylidene)isobenzofuran-1(3H)-one, and (E)-3H,3'H-[1,1'-bibenzo[c] thiophenylidene]-3,3'-dione, are found to fluoresce in their neat solid phases, from upper (S2 ) and lowest (S1 ) singlet excited states, even at room temperature in air. Photophysical studies, single-crystal structures, and theoretical calculations indicate that large energy gaps between S2 and S1 states (T2 and T1 states) as well as an abundance of intra and intermolecular hydrogen bonds suppress internal conversions of the upper excited states in the solids and make possible the fluorescence from S2 excited states (phosphorescence from T2 excited states). These results, including unprecedented fluorescence quantum yields (2.3-9.6 %) from the S2 states in the neat solids, establish a unique molecular skeleton for achieving multi-colored emissions from upper excited states by "suppressing" Kasha's rule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA