RESUMO
Pasteurized Akkermansia muciniphila (p-AKK) is related to lipid metabolism and helps control obesity. The main goal of this study was to investigate the role and mechanism of p-AKK in lipid metabolism using Caenorhabditis elegans. The results showed that p-AKK increased the healthy lifespan of nematodes and helped maintain exercise ability in aging, suggesting a potential increase in energy expenditure. The overall fat deposition and triglyceride level were significantly decreased and the p-AKK anti-oxidative stress helped to regulate fatty acid composition. Additionally, the transcriptome results showed that p-AKK increased the expression of lipo-hydrolase and fatty acid ß-oxidation-related genes, including lipl-4, nhr-49, acs-2 and acdh-8, while it decreased the expression of fat synthesis-related genes, including fat-7, elo-2 and men-1. These results partially explain the mechanisms underlying the fact that p-AKK decreases fat accumulation of C. elegans via nhr-49/acs-2-mediated signaling involved in fatty acid ß-oxidation and synthesis.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Akkermansia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Graxos/metabolismo , Hormônios/metabolismo , Humanos , Hidrolases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Triglicerídeos/metabolismoRESUMO
The probiotic role of lactic acid bacteria (LAB) in regulating intestinal microbiota to promote human health has been widely reported. However, the types and quantities of probiotics used in practice are still limited. Therefore, isolating and screening LAB with potential probiotic functions from various habitats has become a hot topic. In this study, 104 strains of LAB were isolated from and identified in traditionally fermented vegetables, fresh milk, healthy infant feces, and other environments. The antibacterial properties-resistance to acid, bile salts, and digestive enzymes-and adhesion ability of the strains were determined, and the biological safety of LAB with better performance was studied. Three LAB with good comprehensive performance were obtained. These bacteria had broad-spectrum antibacterial properties and good acid resistance and adhesion ability. They exhibited some tolerance to pig bile salt, pepsin, and trypsin and showed no hemolysis. They were sensitive to the selected antibiotics, which met the required characteristics and safety evaluation criteria for probiotics. An in vitro fermentation experiment and milk fermentation performance test of Lactobacillus rhamnosus (L. rhamnosus) M3 (1) were carried out to study its effect on the intestinal flora and fermentation performance in patients with inflammatory bowel disease (IBD). Studies have shown that this strain can effectively inhibit the growth of harmful microorganisms and produce a classic, pleasant flavor. It has probiotic potential and is expected to be used as a microecological agent to regulate intestinal flora and promote intestinal health. It can also be used as an auxiliary starter to enhance the probiotic value of fermented milk.
RESUMO
To explore the mechanism by which Akkermansia muciniphila cell-free supernatant improves glucose and lipid metabolisms in Caenorhabditis elegans, the present study used different dilution concentrations of Akkermansia muciniphila cell-free supernatant as an intervention for with Caenorhabditis elegans under a high-glucose diet. The changes in lifespan, exercise ability, level of free radicals, and characteristic indexes of glucose and lipid metabolisms were studied. Furthermore, the expression of key genes of glucose and lipid metabolisms was detected by qRT-PCR. The results showed that A. muciniphila cell-free supernatant significantly improved the movement ability, prolonged the lifespan, reduced the level of ROS, and alleviated oxidative damage in Caenorhabditis elegans. A. muciniphila cell-free supernatant supported resistance to increases in glucose and triglyceride induced by a high-glucose diet and downregulated the expression of key genes of glucose metabolism, such as gsy-1, pygl-1, pfk-1.1, and pyk-1, while upregulating the expression of key genes of lipid metabolism, such as acs-2, cpt-4, sbp-1, and tph-1, as well as down-regulating the expression of the fat-7 gene to inhibit fatty acid biosynthesis. These findings indicated that A. muciniphila cell-free supernatant, as a postbiotic, has the potential to prevent obesity and improve glucose metabolism disorders and other diseases.
Assuntos
Glucose , Metabolismo dos Lipídeos , Animais , Glucose/metabolismo , Caenorhabditis elegans/metabolismo , Verrucomicrobia , LipídeosRESUMO
Whole-organ transcriptomic analyses have emerged as a common method for characterizing developmental transitions in mammalian organs. However, it is unclear if all cell types in an organ follow the whole-organ defined developmental trajectory. Recently, a postnatal two-stage developmental process was described for the mouse stomach. Here, using laser capture microdissection to obtain in situ transcriptomic data, we show that mouse gastric pit cells exhibit four postnatal developmental stages. Interestingly, early stages are characterized by the up-regulation of genes associated with metabolism, a functionality not typically associated with pit cells. Hence, beyond revealing that not all constituent cells develop according to the whole-organ determined pathway, these results broaden our understanding of the pit cell phenotypic landscape during stomach development.
Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Mucosa Gástrica , Microdissecção e Captura a Laser/métodos , MamíferosRESUMO
Face recognition remains a challenging task in unconstrained scenarios, especially when faces are partially occluded. To improve the robustness against occlusion, augmenting the training images with artificial occlusions has been proved as a useful approach. However, these artificial occlusions are commonly generated by adding a black rectangle or several object templates including sunglasses, scarfs and phones, which cannot well simulate the realistic occlusions. In this paper, based on the argument that the occlusion essentially damages a group of neurons, we propose a novel and elegant occlusion-simulation method via dropping the activations of a group of neurons in some elaborately selected channel. Specifically, we first employ a spatial regularization to encourage each feature channel to respond to local and different face regions. Then, the locality-aware channel-wise dropout (LCD) is designed to simulate occlusions by dropping out a few feature channels. The proposed LCD can encourage its succeeding layers to minimize the intra-class feature variance caused by occlusions, thus leading to improved robustness against occlusion. In addition, we design an auxiliary spatial attention module by learning a channel-wise attention vector to reweight the feature channels, which improves the contributions of non-occluded regions. Extensive experiments on various benchmarks show that the proposed method outperforms state-of-the-art methods with a remarkable improvement.
Assuntos
Reconhecimento Facial , Face/diagnóstico por imagemRESUMO
Areca nut and Fuzhuan brick tea, a type of natural plant products, have obvious effects of fat reduction and weight loss; however, there is no report on their synergistic effect. This study investigated the effects of Fuzhuan brick tea supplemented with different concentrations of areca nut (5% (LAF), 10% (MAF), and 20% (HAF)) on serum and gut microbiota in Kunming (KM) mice. The results showed that Fuzhuan brick tea supplemented with areca nuts (AFTs) could reduce weight, prevent the accumulation of fat, inhibit the increase in the levels of serum triglyceride, total cholesterol, low-density lipoprotein cholesterol, blood glucose, free fatty acid, insulin, and total bile acid, alleviate the decrease in high-density lipoprotein cholesterol level, and regulate the composition of gut microbiota by high-fat diet intervention. The HAF group with 20% areca nut content showed the best effect. These results could provide a novel approach to prevent obesity and hyperlipidemia. PRACTICAL APPLICATIONS: Consumption of areca nut and tea is widespread in Asia and other regions. As a controversial raw material, the damage due to areca nut to oral mucosa health has often aroused public concern and heated discussion; however, its medicinal value has been confirmed in terms of its pharmacological effects in various aspects. Fuzhuan brick tea, a type of traditional postfermented dark tea, has been confirmed to exert effects of antiobesity. Therefore, the areca nut and Fuzhuan brick tea, as a type of natural plant products, have obvious effects of fat reduction and weight loss; however, their synergistic effect has not been reported. To our knowledge, this study is the first to explore the effects of the Fuzhuan brick tea supplemented with areca nuts (AFTs) on serum and gut microbiota in mice. On the premise of exerting their beneficial effects (especially in terms of easing food stagnation and eliminating indigestion) and reducing their toxic and side effects, the effects of AFTs on health were further clarified, which could provide a novel direction for the development and utilization of areca nut. Moreover, our research would increase public understanding of areca nut and provide guidance to the Fuzhuan brick tea processing industry.
Assuntos
Microbioma Gastrointestinal , Animais , Areca , Dieta Hiperlipídica/efeitos adversos , Camundongos , Nozes , CháRESUMO
The protective effect of Schisandra chinensis water extract (SWE) on ethanol-induced neurotoxicity in Caenorhabditis elegans and the underlying mechanism were investigated. Young worms were exposed to ethanol or a mixture of ethanol and SWE for 24 hr. Locomotion ability, tissue ethanol concentration, free radical content, antioxidant enzyme activity, lifespan, and expression of key dopaminergic nervous system-related genes were evaluated. Ethanol affected the motion ability of worms and shortened their lifespan. Ethanol intake increased the tissue ethanol concentration, resulting in redox imbalance, and dopamine release and accumulation. SWE alleviated motility loss of C. elegans and extended their lifespan. It reduced the tissue ethanol concentration and free radical content, likely because it alleviated oxidative stress. Finally, SWE inhibited continuous dopamine excitement. These results suggest that SWE plays a protective role in dopaminergic neurons. It can be used to treat ethanol-induced neurotoxicity, and to investigate its potential mechanism. PRACTICAL APPLICATIONS: Schisandra chinensis is a traditional functional food that has protective effects on the liver and brain. Although S. chinensis is found in some anti-alcohol products, the effects of S. chinensis on neurological and behavioral disorders caused by alcohol are rarely reported. The manuscript explored the protective effect of SWE on ethanol-induced nerve injury in Caenorhabditis elegans, and we preliminarily discussed the underlying mechanism. The results suggested that SWE can alleviate ethanol-induced neurotoxicity. Meanwhile, the results provide a theoretical basis for better use of S. chinensis to develop products to antagonize the side effects of alcohol. In addition, the method of using C. elegans model to evaluate the protective effect of S. chinensis on ethanol-induced nerve injury can provide practical reference for the screening and utilization of other plant functional components.
Assuntos
Schisandra , Animais , Antioxidantes , Caenorhabditis elegans , Etanol/toxicidade , ÁguaRESUMO
Long-stamen chive (Allium macrostemon Bunge; AMB), which is prevalent in the Wuling Mountain area of China, is a characteristic food of the nation. In the study, we evaluated the as-yet-unknown nutritional value and antioxidant activity of fresh AMB. The free amino acid content, volatile components, and free radical-scavenging capacity of isolated organic sulfides were analyzed to evaluate the qualitative and physiological properties of fresh AMB. The plant was found to be rich in free essential amino acids and contain multiple flavor-imparting amino acids. The organic sulfides showed an apparent free radical-scavenging activity in vitro. Furthermore, these sulfides alleviated oxidative stress in Caenorhabditis elegans. Notably, the organic sulfides isolated from AMB enhanced the activities of superoxide dismutase, catalase, and glutathione peroxidase; improved motility; and extended the lifespan in oxidative stress-affected nematodes. In conclusion, our study indicates that AMB is a nutritious vegetable with potential to be developed as a functional food. PRACTICAL APPLICATIONS: Long-stamen chive is a wild edible vegetable belonging to the genus Allium (A. macrostemon Bunge; AMB). However, its quality and physiological properties have not been comprehensively investigated. Herein, we analyzed the free amino acid content, composition of volatile compounds, and potential antioxidative properties of AMB. Our results indicated that AMB is rich in essential amino acids, making it a highly nutritious food. Further analysis indicated that AMB contains a high proportion of organic sulfides, which have been previously been shown to have antioxidative properties. Together, our findings indicate that AMB contains important bioactive components and can be developed as a functional food or health supplement. Furthermore, our findings will enhance public awareness regarding this wild resource and provide new directions for the research and development of natural products derived from it.
Assuntos
Allium , Antioxidantes , Estresse Oxidativo , Animais , Antioxidantes/farmacologia , Caenorhabditis elegans , China , Estresse Oxidativo/efeitos dos fármacos , Sulfetos/farmacologiaRESUMO
Chewing of areca nuts is quite popular in various regions worldwide. Previous studies have demonstrated the pharmacological and toxicological effects of fresh areca nuts. However, processed areca nuts, which are popular in the Hunan province of China, have not been extensively studied for its biological effect. This study aimed at investigating the impact of the acrea nut extracts (ANE) prepared from the raw material, the semi-product, and the final product on the immune system and inflammation-related markers in the Kunming mice. The mice were assigned to seven different groups and administered different ANE at two concentrations (1X and 5X) for four weeks. Total body weight gain and organ coefficient of the liver, spleen, and kidney, as well as the immune system and inflammation-related markers were evaluated. The results revealed that processed areca nuts have a much milder effect on the mice immune system and some inflammatory markers than fresh areca nut in the Kunming mice. PRACTICAL APPLICATIONS: Chewing various forms of areca nuts is popular in China, Southeast Asia, and other regions. People from Hunan, China prefer to chew a processed areca nut, which has rarely been studied. This manuscript explores the effects of three kinds of areca nut extracts on the immune system- and inflammation-related indicators in Kunming mice. The obtained results revealed that processed areca nuts had significantly milder effects than the raw nut/nut extract, particularly on the body weight, immune responses, and inflammatory markers. The results of the present study provide some new directions for the areca nut industry and raise public awareness for the undesirable effects of areca nuts.
Assuntos
Areca , Nozes , Animais , Areca/efeitos adversos , China , Camundongos , Extratos Vegetais , FumaçaRESUMO
DNA topoisomerase (topo) II modulates DNA topology and is essential for cell division. There are two isoforms of topo II (alpha and beta) that have limited functional redundancy, although their catalytic mechanisms appear the same. Using their COOH-terminal domains (CTDs) in yeast two-hybrid analysis, we have identified phospholipid scramblase 1 (PLSCR1) as a binding partner of both topo II alpha and beta. Although predominantly a plasma membrane protein involved in phosphatidylserine externalization, PLSCR1 can also be imported into the nucleus where it may have a tumour suppressor function. The interactions of PLSCR1 and topo II were confirmed by pull-down assays with topo II alpha and beta CTD fusion proteins and endogenous PLSCR1, and by co-immunoprecipitation of endogenous PLSCR1 and topo II alpha and beta from HeLa cell nuclear extracts. PLSCR1 also increased the decatenation activity of human topo IIalpha. A conserved basic sequence in the CTD of topo IIalpha was identified as being essential for binding to PLSCR1 and binding of the two proteins could be inhibited by a synthetic peptide corresponding to topo IIalpha amino acids 1430-1441. These studies reveal for the first time a physical and functional interaction between topo II and PLSCR1.
Assuntos
Antígenos de Neoplasias/metabolismo , Núcleo Celular/enzimologia , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/isolamento & purificação , Sítios de Ligação , DNA Topoisomerases Tipo II/análise , DNA Topoisomerases Tipo II/isolamento & purificação , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/isolamento & purificação , Células HeLa , Humanos , Imunoprecipitação , Microscopia Confocal , Proteínas de Transferência de Fosfolipídeos/análise , Proteínas de Transferência de Fosfolipídeos/isolamento & purificação , Proteínas Recombinantes/metabolismo , Técnicas do Sistema de Duplo-HíbridoRESUMO
A mixed sulfur-iron particles packed reactor (SFe reactor) was developed to simultaneously remove total nitrogen (TN) and total phosphorus (TP) of the secondary effluent from municipal wastewater treatment plants. Low effluent TN (<1.5 mg/L) and TP (<0.3 mg/L) concentrations were simultaneously obtained, and high TN removal rate [1.03 g N/(L·d)] and TP removal rate [0.29 g P/(L·d)] were achieved at the hydraulic retention time (HRT) of 0.13 h. Kinetic models describing denitrification were experimentally obtained, which predicted a higher denitrification rate [1.98 g N/(L·d)] of SFe reactor than that [1.58 g N/(L·d)] of sulfur alone packed reactor due to the mutual enhancement between sulfur-based autotrophic denitrification and iron-based chemical denitrification. A high TP removal obtained in SFe reactor was attributed to chemical precipitation of iron particles. Microbial community analysis based on 16S rRNA revealed that autotrophic denitrifying bacteria Thiobacillus and Sulfuricella were the dominant genus, indicating that autotrophic denitrification played important role in nitrate removal. These results indicate that sulfur and iron particles can be packed together in a single reactor to effectively remove nitrate and phosphorus.
Assuntos
Compostos de Ferro/química , Nitratos/isolamento & purificação , Fósforo/isolamento & purificação , Compostos de Enxofre/química , Águas Residuárias/análise , Purificação da Água/métodos , Betaproteobacteria/genética , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Desnitrificação , Tipagem Molecular , RNA Ribossômico 16S/genética , Thiobacillus/genéticaRESUMO
Isolates of 'Pseudomonas borealis' were recovered after ice-affinity selection of summer-collected soils. 'P. borealis' DL7 was further characterized and shown to have ice nucleation activity (INA), a property that allows the crystallization of ice at temperatures close to the melting point, effectively preventing the supercooling of water. INA was optimally detected after culturing at temperatures consistent with psychrophilic growth. The sequence encoding the 'P. borealis' ice nucleation protein (INP) was obtained using both PCR and chromosome walking. When expressed in Escherichia coli, the resulting inaPb recombinants had INA. The 'P. borealis' sequence, dubbed inaPb, is clearly related to previously cloned INP genes, but it shows greater divergence. Sequence analysis suggests that there are two opposite flat surfaces, one relatively hydrophobic that likely serves as an ice template, and the other that could function as a complementary face to facilitate interprotein interaction for ice-step formation.
Assuntos
Proteínas da Membrana Bacteriana Externa , Cristalização , Gelo , Pseudomonas/metabolismo , Microbiologia do Solo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Canadá , Passeio de Cromossomo , Temperatura Baixa , Meios de Cultura , Escherichia coli/genética , Escherichia coli/metabolismo , Gelo/análise , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNARESUMO
The hmr19 gene was cloned from Streptomyces hygroscopicus subsp. yingchengensis strain 10-22, a bacterium strain producing agricultural antibiotics. Sequence similarity comparison indicates that hmr19 gene may encode a predicted protein with 14 putative transmembrane alpha-helical spanners, belonging to the drug:H(+) antiporter-2 family of the major facilitator superfamily. The expression of hmr19 in the mycelium of strain 10-22 was detected by Western blotting analysis. Gene replacement technology was employed to construct an hmr19 disruption mutant. The growth inhibition test against different antibiotics indicated that the mutant strain was 5-20 fold more susceptible to tetracycline, vancomycin and mitomycin C than the parental wild type strain. The mutant took up tetracycline much faster and accumulated more antibiotics than the wild type strain 10-22. While with the addition of an energy uncoupler, carbonyl cyanide m-chlorophenylhydrazone, the characteristics of the accumulation of [(3)H]tetracycline in these two strains were almost the same. It was thus concluded that hmr19 encoded a multidrug resistance efflux protein.